LIST OF FIGURES

Figure 1.1.	Comparison of average power versus frequency for various types of devices.	6
Figure 1.2.	Dispersion diagrams showing the operating regions of interaction for (a) gyrotron, (b) gyro-TWT, (c) CARM, (d) gyro-BWO, and (e) SWCA.	12
Figure 1.3.	TE_{0n} mode RF electric field in a waveguide with electron beamlets.	15
Figure 1.4.	Illustration of phase bunching phenomenon in an annular electron beam(a) random distribution, and(b) phase bunched electrons in their cyclotron orbits.	16
Figure 1.5.	Time evolution of electrons phase distribution (shown as •) In the Larmor orbit [taken permission for use from Singh (2012)].	18
Figure 1.6.	Schematic of conventional gyrotron with (a) axial output RF coupling and (b) radial <i>output RF coupling</i> .	21
Figure 1.7.	A 2D axial symmetric view of tapered cylindrical RF interation cavity.	23
Figure 2.1.	A schematic view of quasi optical mode converter system.	44
Figure 2.2.	Geometric optical description of a wave beam in a cylindrical waveguide (a) Side view; (b) top view.	49
Figure 2.3.	The unrolled waveguide surface at a constant radius R0 and the Vlasov launcher cuts are highlighted.	50
Figure 2.4.	Vlasov launcher with a cut.	52
Figure 2.5.	Mode variations profile along the length of the $TE_{22,6}$ mode at 110GHz launcher for eight satellite modes.	66
Figure 2.6.	Wall field intensities on the dimple launcher of $TE_{22,6}$ mode at 110GHz for four satellite modes.	66
Figure 2.7.	Mode variations profile along the length of the $TE_{22,6}$ mode at 110GHz launcher for eight satellite modes.	67

- Figure 2.8. Wall field intensities on the dimple launcher of $TE_{22,6}$ mode at 68 110GHz for eight satellite modes.
- **Figure 2.9.** Wall Deformation profiles for the $TE_{10,4}$ mode at 95GHz launcher. 69
- Figure 2.10. Mode variations profile along the length of the TE10,4 mode at 70 95GHz launcher.
- Figure 2.11. Wall field intensities on the dimple launcher of $TE_{10,4}$ mode at 71 95GHz.
- Figure 2.12. Schematic diagram of single disc type window of thickness d. 72
- Figure 2.13. Equivalent Two port scattering matrix network. 73
- **Figure 2.14.** (a) Reflection characteristics versus frequency (b) Transmission **76** characteristics versus frequency for Window at various disc thicknesses *d*.
- **Figure 2.15.** (a) Reflection characteristics versus frequency (b) Transmission **76** characteristics versus frequency for Sapphire Window at various disc thicknesses *d*.
- **Figure 2.16**. (a) Reflection characteristics versus frequency (b) Transmission 77 characteristics versus frequency for CVD Window at various disc thicknesses *d*.
- Figure 3.1. (a) Voltage depression V_{dep} (kV) versus normalized beam radius 90 $\overline{R_b}(=R_b/R_c)$, and (b) Limiting current I_L (A) versus normalized beam radius $\overline{R_b}(=R_b/R_c)$ for TE_{6,2}- mode.
- Figure 3.2. 2-D axis symmetric view of the tapered RF interaction cavity of the 91 gyrotron.
- Figure 3.3. Normalized axial RF field amplitude profiles for various smoothing 93 transition combinations at 0 mm, 4 mm, 6mm of lengths: $L_d = 13$ mm, $L_c = 20$ mm and $L_{up} = 26$ mm.
- Figure 3.4. Beam wave coupling factor C_{mp} curves versus normalized beam 95 radius ($\overline{R_{b}}$) for various modes.
- Figure 3.5. Start oscillation current *Isoc* (Amp) versus DC magnetic field *B* in 96 (T) plots for different operating modes.
- Figure 3.6. Arrangement of the gyrating electrons in Larmor orbit in the 98 Cartesian as well as cylindrical coordinate systems.

- Figure 3.7. Temporal growth of output RF powers P_m (kW) in various modes 102 through time dependent multimode analysis.
- **Figure 3.8.** Interaction efficiency η versus time (ns). 103
- Figure 3.9. PIC simulation results: Normalized axial RF field amplitude profiles 104 hot conditions along with vector field distribution.
- Figure 3.10. Temporal growth of operating and competing mode amplitudes A_m 105 (V/m) from PIC Simulation study.
- Figure 3.11. Frequency response of the operating and competing modes from PIC 106 simulation study.
- Figure 3.12. CST PIC simulation results- Temporal growth of RF powers in the 106 operating and competing modes.
- Figure 3.13. Comparisons of output RF powers in the main mode $TE_{6,2}$ by 107 multimode analysis and PIC simulations for magnetic fields.
- Figure 3.14. Variations in the cavity cut-off frequency f_c due to changes in the RF 113 cavity radius R_c .
- **Figure 3.15.** Schematic diagram of typical radial cooling fins on a cylindrical 115 surface ($f_h = f_{in}$ height, $f_w = f_{in}$ width and s = spacing between fins).
- Figure 3.16. 2D axis symmetric interaction cavity models (a) without and (b) with 119 radial fins simulated in COMSOL (f_h = fin height, f_w = fin width and s = spacing between fins).
- **Figure 3.17.** Wall loading profile (Ohmic power loss density) for operating TE_{6,2} **119** mode of the gyrotron(electrical conductivity $\sigma = 5.8 \times 10^7$ S/m).
- Figure 3.18. Radial deformation ΔR_{rad} at the cavity inner surface for various heat 122 transfer coefficient *h* and cavity thickness δR values (a). Average and (b) Maximum.
- Figure 3.19. Temperature at the cavity outer surface Tout for various heat transfer 122 coefficient h and cavity thickness δR values (a) Average and (b) Maximum.
- Figure 3.20. Range of hydraulic diameter D_h and Water flow rates of the thermal 126 system for the optimized convective heat transfer coefficient h values.
- **Figure 3.21.** 3D view of the radial deformation distribution for heat transfer 126 coefficient h=15000 (W/m2.K) and $\delta R=5 \text{ mm of RG3 group.}$

- Figure 3.22. 3D view of temperature distribution for heat transfer coefficient 126 h=15000 (W/m2.K) and cavity $\delta R=5 \text{ mm of RG3 group.}$
- Figure 3.23. Initial (red colour) and deformed cavity (blue colour) due to ohmic 127 loss at optimized thermal system parameters.
- Figure 3.24. Cold cavity field amplitude profiles for the initial and deformed 128 cavity.
- Figure 3.25. Hot cavity electric field profiles of initial and deformed cavity. 129
- Figure 3.26. Comparisons of power levels in the $TE_{6,2}$ for initial and deformed 129 cavity.
- Figure 4.1. (a) Voltage depression V_{dep} (kV) versus normalized beam radius 140 $\overline{R_b}(=R_b/R_c)$, and (b) Limiting current I_L (A) versus normalized beam radius $\overline{R_b}(=R_b/R_c)$ for TE_{10, 4}- mode.
- Figure 4.2. Normalized axial RF field amplitude profiles for various uniform 141 section lengths: L_c = 28.00 mm (solid light), 30.00 mm (solid) and 32.00 mm (dashed light).
- Figure 4.3. Beam wave coupling factor C_{mp} curves versus normalized beam 143 radius $(\overline{R_{b}})$ for various modes.
- Figure 4.4. Start oscillation current Isoc (in amperes) versus DC magnetic field 143 B in (tesla) plots for different operating modes.
- Figure 4.5. Beam misalignments effects: Location of beam lets for d = 0 mm and 146 d = 0.5 mm.
- Figure 4.6. Temporal growth of output RF powers P_m (kW) in various modes 148 through time dependent multimode analysis.
- Figure 4.7. PIC simulation results: Comparisons of Normalized axial RF field 149 amplitude profiles in the cold and hot conditions along with vector field distribution.
- Figure 4.8. 3D PIC Simulation results- Temporal growth of operating and 150 competing mode amplitudes A_m (V/m) from PIC Simulation study (b). Frequency response of the operating and compete modes.
- **Figure 4.9.** 3D PIC Simulation results-(a)Temporal growth of RF powers in the 152 operating and competing modes Pm resulted from PIC simulation (b) Wave particle power transfer (kW) versus time (ns).

- Figure 4.10. Comparisons of output RF powers in the main mode $TE_{10,4}$ through 154 multimode analysis and PIC simulation study.
- Figure 4.11. Normalized axial cold cavity field profiles and the corresponding 157 radius profiles that include NLT section vs axial distance of the device.
- Figure 4.12. Analytical results: (a) normalized axial cold cavity field profiles and 158 the corresponding radius profiles that include NLT section vs axial distance of the device (b) RF power versus time.
- **Figure 4.13.** (a). Normalized axial E field profile in hot (beam present condition) **159** along with 2D vector field pattern of $TE_{10,4-}$ mode (b). FFT field amplitudes of $TE_{10,4-}$ (Light shade) and $TE_{7,5+}$ (dark shade)modes.
- **Figure 4.14.** 3D PIC Simulation results- temporal growth of amplitudes across 159 various modes $A_m(V/m)$ (a) : TE_{7,5+} overrides TE_{10,4-} (while plotting) (b) vice versa.
- Figure 4.15. 3D PIC Simulation results- (a) temporal growth of mode powers and 160 (b) wave particle power transfer versus time.
- Figure 4.16. Temporal growth of power developed across various modes P_m as 161 well Wave-particle power transfer.
- **Figure 4.17.** Inner maximum radial deformations versus convective heat transfer 161 coefficient *h* for various cavity thickness δR_{rad} at electrical conductivities (a) 5.8e7 S/m (b) 2.9e7 S/m.
- Figure 4.18. Outer maximum radial cavity temperatures T_{out} (K) versus 162 convective heat transfer coefficient h at various cavity thickness δ Rrad at electrical conductivities (a) 5.8e7 S/m (b) 2.9e7 S/m.
- Figure 4.19. 3D view of surface displacements and surface temperatures for heat 163 transfer coefficient $h=2000 \text{ (W/m}^2\text{.K)}$ and cavity $\delta R= 4.5 \text{ mm.}$
- Figure 5.1. Dependence of Relativistic factor and cyclotron frequency with 175 respect to Beam voltage.
- Figure 5.2. % change of cyclotron frequency versus magnetic field B (T). 176
- Figure 5.3. Beam wave coupling factor C_{mn} versus normalized beam radius 177 $\overline{R_b} = R_b / R_c$.
- Figure 5.4. Axial mode profiles at beam absent conditions for various q of 179 proposed RF interaction cavity.

- **Figure 5.5.** Start Oscillation currents for $TE_{5,3,q}$ mode q = 1 to 6 versus magnetic **180** field.
- Figure 5.6. % of voltage depression versus beam voltages for the various beam 181 current values.
- Figure 5.7. Operating frequencies and RF power levels for various axial 183 variations, q = 1 to 6 in magnetic tuning at $I_b = 400$ mA.
- Figure 5.8. Operating frequencies and RF power levels for various axial 183 variations, q = 1 to 6 in magnetic tuning at $I_b = 20$ mA.
- Figure 5.9. Resonant frequencies and RF power levels for various axial 184 variations, q = 1 to 6 in electrical tuning at $I_b = 400$ mA.
- Figure 5.10. Resonant frequencies and RF power levels for various axial 185 variations, q = 1 to 6 in electrical tuning at $I_b = 20$ mA.
- Figure 5.11. Reflection characteristics r (dB) versus frequency (GHz) at various 186 disc thickness $d = N d_0$ of window radius thickness.
- Figure 5.12. Transmission characteristics T (dB) versus frequency (GHz) at 187 various disc thickness $d = N \ge d_0$.
- **Figure 6.1.** Normalized cold cavity axial RF field amplitude profiles for various 195 axial mode indices $TE_{0,3,q}$, where q = 1, 2, 3 of Joye *et al.* (2006).
- **Figure 6.2.** Start oscillation current I_{soc} (mA) versus DC magnetic field B (Tesla) **196** plots of $TE_{0,3,q}$ for different axial mode indices q of Joye *et al.*(2006).
- **Figure 6.3.** Normalized cold cavity axial RF field amplitude profiles of modified **198** cavities for various axial mode indices $TE_{0,3,q}$, for q = 1, 2, 3, and 4.
- Figure 6.4. Start oscillation current I_{soc} (in amperes) versus DC magnetic field B 199 in (tesla) plots for different axial operating modes of $TE_{0,3,q}$ for modified RF cavity dimensions.
- Figure 6.5. Comparisons of RF power (a) versus time using multimode analysis 201 and (b) with respect to magnetic fields for cavities of Colin D Joye *et al.* (2006) and modified design.
- Figure 6.6. PIC Simulation results (a-b) hot axial RF field profiles (c-d) 202 frequency response of the operating mode $TE_{0,3,q}$ with axial index q = 1 for cavities of Joye *et al.*(2006) and modified designs, respectively.
- Figure 6.7. PIC Simulation results Temporal growth of mode $TE_{0,3,1}$ (a b) 203 amplitudes (c d) power values for cavities reported design by Joye

et al. (2006) and as per our modified design, respectively.