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                                                                Chapter 4 
 

            Harmonic Minimization in HC-MLI Using 

Modified Grey Wolf Optimization  

_______________________________________________ 
 

4.1  Introduction 

In this chapter, selective harmonics elimination pulse width modulation (SHE-PWM) 

technique has been employed through modified grey wolf optimisation (MGWO). This 

optimization algorithm is then applied for the control of a three-phase, 11-level hybrid 

cascaded multilevel inverter (HC-MLI) [114]. SHE-PWM technique is implemented 

through MGWO which generates optimal switching angles for the HC-MLI, so as to 

eliminate lower order harmonics such as 5th, 7th, 11th and 13th from the output voltage. 

The capacitor voltage balance is achieved even at higher modulation indices by exploiting 

the redundant switching states of HC-MLI. 

4.2  Mathematical Modelling of GWO Algorithm 

GWO algorithm mimics the hunting mechanism and leadership hierarchy of grey wolves. 

GWO uses four main steps to achieve the best positions such as searching, encircling, 

hunting and attacking the prey [97], [98]. The algorithm consists of four types of grey 

wolves which are alpha (α), beta (β), delta (δ) and omega (ω). In this section, the 

mathematical models of the social hierarchy, encircling, search of prey, attacking prey 

and hunting mechanism are discussed. In order to mathematically model the social 

hierarchy of wolves, α is considered as the fittest solution. Consequently, the second and 

third best solutions are named β and δ respectively. The rest of the candidate solutions are 

assumed to be omega ω. In the GWO algorithm the hunting (optimization) is guided by 

α, β and δ.  
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4.2.1  Encircling Prey  

The grey wolves update their positions around the prey using (4.1) and (4.2), given as 

                                         𝐷 = |𝐶 ⋅ �⃗�𝑃(𝑗) − �⃗�(𝑗)|                                                       (4.1) 

                                        �⃗�(𝑗 + 1) = �⃗�𝑃(𝑗) − 𝐴. �⃗⃗⃗�                                                     (4.2) 

 

where j is the current iteration. 𝑋 indicates the position vector of the grey wolf. 𝑋p is the 

position vector of the prey. 𝐴 and 𝐶 are coefficient vectors. Vector 𝐴 is expressed as 

 

                                             𝐴 = 2�⃗�. 𝑟1 − �⃗�                                                                 (4.3) 

and vector C as      

                                               𝐶 = 2. 𝑟2                                                                        (4.4) 
 

where a is a coefficient vector. r1 and r2 are random vectors. The value of a linearly 

decreases from [2, 0] and r1, r2 are random vectors between [0, 1]. 

A two-dimensional position vector and some of the possible update co-ordinates are 

demonstrated in Fig. 4.1. The grey wolf in position (X, Y) can update its position 

according to the position of the prey (X*, Y*) as shown in Fig. 4.1. Different places around 

the best agent can be reached with respect to the current position by adjusting the value 

of A and C vectors.  

 

 

 

 

 

 

 

  Fig. 4.1  2D vectors and their possible next locations in GWO [97]. 
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4.2.2  Attacking Prey (Exploitation Phase) 

In order to mathematically model the attacking the prey, the value of �⃗� decreased in due 

course iterations. The value of a linearly decreases from [2, 0] and r1, r2 are random 

vectors between [0, 1]. The value of a is within the range [1, 2] at early stage. A becomes 

greater than 1 or less than −1 in due course of time. This helps the grey wolves to diverge 

from the currently considered prey to find a better prey. When, a decreases and comes 

within the range [0,1], A lies in the range [−1, 1], which compels the grey wolves to move 

gradually towards the best position. With these operators, the GWO algorithm allows its 

search agents to update their position based on the location of the α, β and δ and attack 

towards the prey. However, the GWO algorithm is prone to stagnation in local solutions 

with these operators.  

4.2.3 Search for Prey (Exploration Phase)  

Grey wolves mostly search according to the position of the α, β and δ wolves. They 

diverge from each other to search for prey and converge to attack prey. In order to 

mathematically model exploration, the value of  𝐴 is set at a value greater than 1 or less 

than -1. This emphasizes exploration and allows the GWO algorithm to search globally. 

Fig. 4.2(a) shows that |𝐴| < 1 forces the wolves to attack the prey and Fig. 4.2(b) shows 

that |𝐴| > 1 forces the grey wolves to diverge from the prey.  

 

 

 

 

 

                                         

  Fig. 4.2  Attacking prey versus searching for prey [98]. 

(a) 

 

(b) 

 

If |𝐴| < 1 

If |𝐴| > 1 
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 Hence, the optimal solution tends to diverge from the prey when,  𝐴 > 1 and converge 

towards the prey when 𝐴 < 1.  

4.2.4  Hunting Mechanism 

Grey wolves have the ability to recognize the location of prey and encircle them. The 

hunting is usually guided by α wolf. The β and δ wolves might also participate in hunting 

occasionally. In order to obtain the global optima more quickly, GWO improves the 

current best solution by using a weighting method. In GWO, the position update 

expression is weighted in every iteration as given in (4.7) and coefficient vectors are 

obtained using (4.5) and (4.6), where 𝐴1, 𝐴2 and 𝐴3 are calculated using (4.3). 

                    𝐷⃗⃗⃗⃗
𝛼 = |𝐶1 ⋅ �⃗�𝛼 − �⃗�|                  

                                                         �⃗⃗⃗�𝛽 = |𝐶2 ⋅ �⃗�𝛽 − �⃗�|                                               (4.5) 

    �⃗⃗⃗�𝛿 = |𝐶3 ⋅ �⃗�𝜕 − �⃗�| 

 �⃗�1 = �⃗�𝛼 − 𝐴1. �⃗⃗⃗�𝛼 

                                                         �⃗�2 = �⃗�𝛽 − 𝐴1. �⃗⃗⃗�𝛽                                                (4.6) 

   �⃗�3 = �⃗�𝛿 − 𝐴1. �⃗⃗⃗�𝜕 

                                                     �⃗�(𝑗 + 1) =
�⃗⃗�1+�⃗⃗�2+�⃗⃗�3

3
                                             (4.7) 

4.3  Limitations of GWO 

In case of conventional GWO, the location of the wolves within the entire community is 

updated by simple averaging of best locations. The GWO algorithm suffers from 

premature convergence and weak local searching ability. In order to take care this 

problem in the proposed work, a local search algorithm, called chaotic searching 

mechanism is combined with GWO to enhance the rate of convergence and avoid it from 

being stuck at local optima [112]. The evolved method is named as modified GWO 
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(MGWO) in this work. MGWO balances the exploration by modifying the position co-

efficient to an exponentially decaying function. The convergence speed of the MGWO 

increases, when exploration is increased in comparison to exploitation. Moreover, this 

also avoids the local minima from being trapped.  Weighted sum of best of the locations 

is taken instead of simple average of positions to achieve global optima. 

 

4.4  Modified GWO Algorithm  

The proper balance between exploration and exploitation guarantees accurate estimation 

of the global optima. Basic exploration and exploitation prevent the algorithm from 

finding global optima and also results into local optima stagnation. Generally, higher 

exploration of search space results in lower probability of local optima stagnation. Too 

much exploration is similar to too much randomness and will probably not give good 

optimization results. A right balance between these two exploration and exploitation can 

guarantee an accurate approximation of the global optimum. Thus, a balance between 

exploitation and exploration is a must. In MGWO, the transition between exploration and 

exploitation is generated by the adaptive values of 𝑎 and 𝐴. In MGWO, half of the 

iterations are devoted to exploration (|𝐴| ≥ 1) and the other half are used for exploitation 

(|𝐴| < 1). Exponential functions are used instead of linear function to decrease the value 

of 𝑎 over the course of iterations. The function which gives the exponential decay for a 

during the iterations of MGWO is given as 

                                                     

2

2
2 1

m
a

n

 
= − 

 
 

                                                      (4.8) 

where m indicates the maximum number of iterations and n is the current iteration. The 

numbers of iterations used for exploration and exploitation are 60% and 40%, 

respectively. 
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GWO with chaotic search technique has been applied in this paper for the improvement 

of search efficiency and the reduction of the possibility of being trapped at the local 

optima [112]. The chaotic equation is defined as 

                                                   𝑥𝑗+1 = 𝜇. 𝑥𝑗(1 − 𝑥𝑗)                                              (4.9)          

where 𝑥𝑗 is a variable (𝑗 = 0,1,2 ⋅⋅⋅) and 𝜇 is the control parameter. The procedure of 

chaotic local search is described as 

                                                       𝑐𝑥𝑗
𝑛+1 = 𝜇. 𝑐𝑥𝑗

𝑛(1 − 𝑐𝑥𝑗
𝑛)                             (4.10) 

where 𝑐𝑥𝑗
𝑛 represents the chaotic variable. n represents the iteration number.  

The procedure of chaotic local search algorithm is as follows: 

Step 1: Set n = 0 and map the decision variables 𝑥𝑗
𝑛 from the interval (𝑥𝑚𝑖𝑛, 𝑗 , 𝑥𝑚𝑎𝑥, 𝑗) to 

chaotic variables 𝑐𝑥𝑗
𝑛 using  

                                           𝑐𝑥𝑗
𝑛 =

𝑥𝑗
𝑛−𝑥𝑚𝑖𝑛, 𝑗

𝑥𝑚𝑎𝑥, 𝑗−𝑥𝑚𝑖𝑛, 𝑗
                                             (4.11) 

Step 2: Determine the chaotic variables 𝑐𝑥𝑗
𝑛+1 for the next iteration using (4.9). 

Step 3: Convert the chaotic variables 𝑐𝑥𝑖
𝑛+1 to decision variables 𝑥𝑗

𝑛+1 using  

                                𝑥𝑗
𝑛+1 = 𝑥𝑚𝑖𝑛, 𝑗 + 𝑐𝑥𝑗

𝑛+1(𝑥𝑚𝑎𝑥, 𝑗 − 𝑥𝑚𝑖𝑛, 𝑗)                               (4.12) 

Step 4: The new solutions are evaluated with variables 𝑥𝑗
𝑛+1. 

Step 5: If the new solution achieves better performance or the maximum number of 

iterations is reached, take the new solution as chaotic local search; or else, 

modify n = n+ 1 and go back to Step 2. 
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4.4.1  Proposed Variable Weights in MGWO 

In GWO, the searching and hunting process are governed by α wolf, whereas the β wolf 

plays less important role and the δ wolf plays lesser important role. During hunting 

process, α is nearest to the prey among three grey wolves; β and δ ranks second and third. 

So, the position of α wolf is mainly contributed in searching new individuals, while the 

importance of other wolves is ignored. This means that the weight of α should be near to 

1 at the beginning, while the weights of the β and δ could be near zero. At the final state, 

the α, β and δ wolves should encircle the prey, which means that they have equal weights. 

So, the weight of the α is reduced and the weights of the β and δ arise in final stage of the 

algorithm. The previously described (4.7) is now modified in the proposed MGWO 

algorithm and given as 

                                           �⃗�(𝑗 + 1) = 𝑤1. �⃗�1 + 𝑤2. �⃗�2 + 𝑤3. �⃗�3                                 (4.13) 

where w1, w2 and w3 are the corresponding weights. 

The weight of α, β and δ are denoted as w1, w2 and w3. The weights should always satisfy 

w1 ≥ w2 ≥ w3. Mathematically, the weight of α is changed from 1 to 1/3 during the 

searching procedure. At the same time, the weights of the β and δ is increased to 1/3 from 

0. 

The procedure for explaining the optimization problem using MGWO is as follows: 

Step 1: Initialise MGWO parameters between upper and lower limits. 

Step 2: Generate initial population randomly. 

     Step 3: Calculate fitness value of each grey wolf in the population and sort it according to 

fitness values. 

Step 4: Select the first, second and third best fitness values as the positions of grey wolves  

α, β and ω respectively. 
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Step 5: The position of α wolf is mapped into chaotic variables using (4.11).  

Step 6: The chaotic sequences are calculated through iterative technique and converted 

chaotic sequences are represented as new positions using (4.10) and (4.12). 

Step 7: The fitness of new position sequences is evaluated. 

Step 8: Update the positions of current grey wolves using (4.15) - (4.17). 

 Fig. 4.3  Description of MGWO algorithm. 
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Step 9: The co-efficient A and C in (4.5) and (4.6) and the parameter a in (4.13) are 

updated. 

Step 10: The fitness values of grey wolves α, β and δ in new population are update till 

global optima is achieved. 

Step 11: Repeat step 2 to 10, till the termination criteria is achieved. 

The detailed flow chart of the optimization algorithm (MGWO) is shown in Fig. 4.3. 

 

4.5  Implementation of SHE-PWM in MGWO Optimized HC-MLI 
 

The proper objective function f is represented by the following mathematical equation  

                      f = min

24
*

1 1

*
21 1

1
100 50 s

S
h

s s

VV V

V h V=

   − 
+   

     
                                       (4.14) 

subjected to 

                                                  0 ≤ 𝜃1 ≤ 𝜃2 … 𝜃𝑛 <
𝜋

2
                                              (4.15) 

where hs is the Sth harmonic order e.g., h2 = 5, h3 = 7, h4=11 and h5=15 and *

1V represents the 

fundamental component of output voltage. The weighting factors (
1

ℎ𝑠
) defines the 

elimination in lower order harmonics. The number of iterations and population size in the 

algorithm are chosen as 200 and 100 respectively. The algorithm starts with the random 

initialization of wolves (switching angles) and the fitness of each wolf is then evaluated. In 

MGWO, chaotic iterative method is used for local refinement. Exponentially decaying 

position co-efficient stabilities exploration and exploitation mechanism. The algorithm is 

run for different modulation indices till the termination criteria is achieved. The plot of 

switching angles versus modulation index (ma) is shown in Fig. 4.4. The graphs of fitness 

value versus modulation index for GA, PSO, GWO and MGWO are shown Fig. 4.5. The 

magnitude of lower order harmonics (5th, 7th, 11th and 13th) versus modulation index for the  
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Fig. 4.6  The 5th,7th,11th and 13th harmonics  versus  modulation 

index. 

 Fig. 4.4  Switching angles at different modulation index. 

Fig. 4.5  Fitness value for MGWO, GWO, PSO and GA 

versus modulation index. 
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proposed MGWO are shown in Fig. 4.6. It can be observed from Fig. 4.6 that the lower 

order harmonics have decreased significantly. The cumulative distribution function 

(CDF) is evaluated to validate the usefulness of MGWO [114]. The comparison plots of 

CDF for GA, PSO and GWO with MGWO algorithm are shown in Fig. 4.7. The results 

obtained establish the superiority of MGWO in terms of rate of convergence as compared 

to GWO, PSO and GA. The convergence plots of fitness function versus number of 

iterations for MGWO, GWO, PSO and GA are shown in Fig. 4.8. It can be observed from 

Fig. 4.8 that the controller needs up to 200 iterations to obtain the optimal switching angle 

values in case of MGWO. 

Fig. 4.8  Convergence plot of MGWO, GWO, PSO and 

GA versus number of iterations. 

Fig. 4.7  Comparison of CDF versus fitness value for MGWO, 

GWO, PSO and GA. 
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The %THD at different modulation indices for reported algorithms with proposed 

MGWO algorithm are shown in Fig. 4.9. The proposed MGWO optimized HC-MLI has 

better harmonic content than GA, PSO and GWO. The comparison of fitness values and 

convergence rate of different algorithms are given in Table 4.1. It can be concluded from 

Table 4.1 that the fitness value and convergence rate of MGWO is better than GA, PSO 

and GWO.  

4.6  Simulation Verification 

In order to verify the proposed work, a 1.5 kW three-phase, 11-level HC-MLI has been 

simulated in MATLAB/Simulink using proposed MGWO algorithm. 

  Table 4.1 

Parameters of MGWO, GWO, PSO and GA 

No. of iteration=200 and Population size =100 at (ma = 0.5) 

Parameters MGWO GWO PSO GA 

Fitness value 

 

6.7X10-46 

 

 

4.5X10-38 

 

 

5.3X10-30 

 

 

6.2X10-10 

 

Convergence 

rate 

to global 

optima 

very high 

 

high 

 

high 

 

 

low 

 

Fig. 4.9  Comparison of %THD for MGWO, GWO, PSO and 

GA at different modulation index. 



105 
 

 

 

 

 

Fig. 4.10  Simulation results of MGWO optimized HC-MLI (Capacitor voltages). 

(a) V0 and Vcap for modulation index (ma) = 0.6. (b) V0 and Vcap for ma = 1.1 in case 

of unbalanced condition of capacitor. (c) V0 and Vcap for ma = 1.1 at balanced 

condition of capacitor voltage. 

 

(a) 

 

(b) 

 

(c) 
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4.6.1  Operation at ma = 0.6           

From Fig. 4.4, the switching angles are obtained as θ1 = 31.75, θ2 = 45.96, θ3 = 57.54, θ4 

= 68.54 and θ5 = 85.34. The waveform of V0 and capacitor voltage Vcap of the HC-MLI 

are shown in Fig. 4.10(a). The average voltage across the capacitor is balanced at 30 V. 

 

4.6.2  Operation at ma = 1.1 

Similarly, for ma = 1.1, the switching angles are obatained as θ1 = 5.33, θ2 = 8.57, θ3 

=20.56, θ4 = 25.39 and θ5 = 41.58.  

 

 

 

 

 

 

 

 

 

 

(b)    

(a)    

Fig. 4.11  Simulation results of MGWO optimized HC-MLI (Line voltages and harmonic 

spectrums). 

(a) Line-line voltage (VAB) for ma 0.6. (b) Spectrum of harmonic analysis of VAB for ma 0.6. 
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With these switching angles, it is unable balance the capacitor voltage. Hence, in order to 

balance the capacitor, a third harmonic voltage is injected as discussed in 2.6.2 of chapter 

2. Output voltage V0 and capacitor voltage Vcap without and with capacitor balance are 

shown in Fig. 4.10(b) and (c) respectively. The average value of the capacitor voltage 

also gets balanced at 30 V for higher modulation index. 

The output line voltage (VAB) and its harmonic spectrum at ma = 0.6 are shown in Fig. 

4.11(a) and (b). It can be observed from Fig. 4.11(b) that lower order dominant harmonics 

(5th,7th, 11th and 13th) have been eliminated from the output voltage of HC-MLI. 

 

4.7  Experimental Validation 
 

A 1.5 kW laboratory prototype is used to verify the performance of the proposed MGWO 

optimized three-phase, 11-level HC-MLI, as shown in Fig. 2.24 of chapter 2. The phase 

voltages (VA, VB and VC) for resistive load at ma = 0.6 are shown in Fig. 4.12(a) and are 

measured as 72.5 V. For R-L load, the output voltage VA and output current IL at ma = 0.6 

are shown in Fig. 4.12(b). The balancing of capacitor voltage at higher modulation index 

is also investigated experimentally. Fig. 4.12(c) shows the output phase A voltage (VA) at 

ma = 1.1 and three phase voltages (VA, VB and VC) are shown in Fig. 4.12(d) and are 

measured as 111.5 V. The voltage of capacitor is balanced at 30 V. Hence, it confirms the 

balancing of capacitor voltage at higher ma. The line-line voltage VAB of the MGWO 

optimized HC-MLI at ma=0.6 is shown in Fig. 4.13(a) and measured as 168.53 V. The 

harmonic spectrum analysis of VAB for ma=0.6 is shown in Fig. 4.13(b). From Fig. 4.13(b), 

it can be observed that the lower order harmonics such as 5th, 7th, 11th and 13th are reduced. 

Experimental results of line-line voltages (VAB, VBC and VCA) at higher ma = 1.1 are shown 

in Fig. 4.14. The output voltage VAC and load current IL after connecting filter inductor is 

shown in Fig. 4.15(a). 



108 
 

 

 

  (c) 

Fig. 4.12  Experimental results of MGWO optimized HC-MLI (Phase voltages). 

(a) VA, VB and VC for ma 0.6. (b) VA for inductive load for ma 0.65. (c) VA for ma 1.1.(d) VA, VB 

and VC for ma 1.1.  
 

  (c) 

  (b) 

  (d) 

  (a) 

VA 

VB 

VC 

VA 

VC 

VB 

VA 

VCAP 

Fig. 4.13  Experimental result of line voltage at ma 0.6.(a) Line -line voltage VAB for ma 0.6. 

(b) Spectrum of harmonic analysis of VAB for ma = 0.6. 

  (a)   (b) 
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The output voltage of the HC-MLI is maintained at 85.2 V using closed loop control as 

discussed earlier for a load current of 16.8 A.  The detailed harmonic analysis of VAC at 

ma = 0.6 after connecting LC filter is shown in Fig. 4.15(b) and harmonic magnitudes are 

within the IEEE Std 519-2014 [110]. 

Fig. 4.14  Experimental results of MGWO optimized HC-MLI (Line-line 

voltage (VAB) at ma = 1.1). 

Fig. 4.15  Experimental result of line voltage after connecting LC filter.  

(a) Line-line voltage VAB and voltage of capacitor VCAP for ma = 0.6. (b) Spectrum of 

harmonic analysis of VAB for ma = 0.6. 
 

 

  (a)   (b) 
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4.8  Comparison Between GWO and MGWO  

A comparison between GWO [97] and MGWO is made as shown in Table 4.2, containing 

magnitude of lower order harmonics (5th, 7th, 11th and 13th) and %THD obtained through 

experimentation for GWO and MGWO algorithms at modulation indices ma = 0.6 and 

1.1, respectively. It can be observed that the lower order harmonics and %THD are further 

reduced in MGWO in comparison to GWO. 

 

4.9  Comparison Among MPSO, MWO and MGWO 

From the results obtained in chapters 2, 3 and 4, a comparison is made among MPSO, 

MWO and MGWO optimized HC-MLI using SHE-PWM for the same number of 

iterations and population size. It has been found that the running time of MPSO is more 

than MWO and MGWO. MPSO is more complicated than MWO and MGWO because it 

is a combination of a global exploration and local exploitation, which uses a complicated 

differential evolution mutation strategy. In the proposed MWO, the code complexity is 

less and it uses leadership hierarchy mechanism to obtain better refined solution as 

compared MPSO. The convergence rate of MWO is better than MPSO. The 

computational time required for digital implementation of MWO is also less than MPSO.  

The proposed MGWO gives improved results than MPSO and MWO; in terms of 

possibility of attaining global optima, higher rank of convergence, higher fitness value 

and harmonic content for the same population size and number of iterations.  

 

 

  Table 4.2 

 Comparison Between GWO [97] and MGWO  

Modulation 

index (ma) 
ma = 0.6 ma = 1.1 

Harmonic 

order (hs) 
5th 7th 11th 13th 

% 

THD 
5th 7th 11th 13th 

% 

THD 

GWO [97] 0.2478 0.2235 0.1526 0.1229 6.13 0.3754 0.3158 0.2613 0.2145 6.24 

MGWO 0.1963 0.1642 0.1103 0.0876 5.54 0.3268 0.2416 0.2127 0.1763 6.03 

 

 

 



111 
 

  Table 4.3 

  Comparison of % THD Among Proposed MPSO, MWO and MGWO  

Modulation index 

MPSO 

(%THD) 

 

MWO 

(%THD) 

MGWO 

(%THD) 

0.5 8.41 8.23 7.52 

0.6 7.53 7.09 6.41 

0.7 7.69 6.78 6.12 

0.8 5.23 5.01 4.33 

0.9 4.78 4.50 4.14 

1 5.03 4.67 4.55 

1.1 5.64 5.11 4.01 

 

 

 

 

 

 

 

The %THD comparison among MPSO, MWO and MGWO is given in Table 4.3. 

Table 4.4 gives the comparison of convergence rate and computational time for MGWO, 

MWO and MPSO.  It can be observed from Tables 4.3 and 4.4 that the proposed MGWO 

gives better result in terms of harmonic content, convergence rate, and computational 

time. 

 

4.10  Conclusion 

In this chapter, MGWO optimized three-phase, 11-level HC-MLI is presented using SHE-

PWM. The use of adaptive position co-efficient vector and exponentially decaying 

        Table 4.4 

Performance comparison of MGWO, MWO and MPSO 

No. of Iteration=200 and Population size =100 at (ma=0.7) 

Parameters 

 

MGWO MWO MPSO 

 

Convergence rate 

 

 

Very high 

 

 

Medium 

 

Low 

Computational time 

(sec) 

1.116 1.132 1.953 
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function in MGWO gives improved results as compared to GWO. In MGWO, chaotic 

local search technique efficiently takes care of local optima, while weighted position 

control strategy enhances the convergence rate as compared to GA, PSO and GWO.  

MGWO also helps to obtain the global optima quickly as compared to GA, PSO and 

GWO and effectively eliminates lower order harmonics from the output voltage. 

Moreover, the proposed MGWO control strategy balances the capacitor voltage even at 

higher modulation indices by exploiting the redundancies of HC-MLI. The steady state 

and dynamic performance of the proposed MGWO optimized HC-MLI has been validated 

through simulation and experimentation. Further, a comparison among MPSO, MWO and 

MGWO has been carried out, which confirms the superiority of MGWO in terms of 

harmonic minimization and convergence rate. 

It has been found that balancing of capacitor voltage is an inherent challenge in HC-

MLIs. Several control schemes have been reported in the literature to achieve capacitor 

voltage balance in HC-MLIs, which makes the overall control complicated. The control 

schemes become even more complicated with the increase in number of output voltage 

levels of the HC-MLIs, as the increase in output voltage levels require more active and 

passive components along with increased number of DC voltage sources. Switched-

capacitor multilevel inverters (SC-MLIs) have emerged in recent years as a promising 

MLI to counter these problems. SC-MLIs use lesser active and passive components along 

with reduced number of DC voltage sources as compared to HC-MLI.  Also, the capacitor 

voltage is balanced inherently in SC-MLIs, without using extra control circuits and 

therefore the switching scheme is simple as compared to HC-MLI. The SC-MLIs given 

in literature are explored and two new topologies of them, namely diode assisted 

switched-capacitor MLI (DASC-MLI) and reduced voltage stress switched capacitor 

MLI (RVSC-MLI) are proposed using MGWO in the next two chapters. 


