LIST OF FIGURES

Figure No.	Caption	Page No.
Figure 1.1	Schematic representation of graphite aerosol generation and	3
	nuclear material transport during air ingress accident	
Figure 1.2	Definition of particle size depending on particles properties and	5
	behaviour	
Figure 1.3	Aerosol effects on environment	9
Figure 1.4	Effects of aerosol on human health	10
Figure 1.5	Method and instrument of particles measurement	14
Figure 1.6	Structure of graphite	15
Figure 1.7	Progressive model	23
Figure 1.8	Shrinking core model	24
Figure 1.9	Oxidation regimes in graphite	25
Figure 1.10	Block diagram of work plan	30
Figure 2.1	Schematic diagram of experimental set-up	43
Figure 2.2	Picture of the experimental set-up	43
Figure 2.3	Furnace picture and schematic diagram	45
Figure 2.4	PID controller	45
Figure 2.5	Flow homogenizer device	47
Figure 2.6	Picture of flange and its drawing	47
Figure 2.7	Systematic diagram of clean air supply unit	50
Figure 2.8	Component of clean air supply unit	50

Figure 2.9	Sampling ports in borosilicate tube	51
Figure 2.10	Isokinetic probe	53
Figure 2.11	Heat exchanger	54
Figure 2.12	Picture of diluter and schematic of its internal circuit	55
Figure 2.13	Flow splitter	56
Figure 2.14	Picture of (a) Nanoscan (b) Optical Particle Sizer	57
Figure 2.15	Schematic diagram of Nanoscan working principle	58
Figure 2.16	Schematic of differential mobility analyzer	59
Figure 2.17	Schematic diagram of OPS working principle	60
Figure 2.18	Gas analyser	61
Figure 3.1	Temperature measurement in experiment	67
Figure 3.2	Temperature recorded at different flow rates	67
Figure 3.3	Sampling ports in borosilicate tube	69
Figure 3.4	Temperature variation at the ports at different flow rate with a	69
	constant furnace temperature	
Figure 3.5	Schematic diagram of the sampling at (a) isokinetic (b) super-	72
	isokinetic (c) sub-isokinetic conditions	
Figure 3.6	Variation of the Stokes number with the probe diameter at	74
	different flow rate	
Figure 3.7	Comparison of isokinetic and anisokinetic sampling	77
Figure 3.8	Variation of diffusion and gravitational loss with particle mean	82
	diameter at different flow rates	
Figure 3.9	Variation of thermophoresis loss with particle mean diameter	84
Figure 4.1	Picture of (a) bare graphite and (b) alumina coated graphite	88
Figure 4.2	XRD pattern of graphite sample	89

Figure 4.3	EDS of graphite sample	89
Figure 4.4	TGA of graphite sample	90
Figure 4.5	Furnace heating rate	94
Figure 4.6	Block diagram of the experimental procedure	94
Figure 5.1	SEM analysis of residual samples after burning in air at	99
	constant temperatures for 2-hours	
Figure 5.2	Particle number concentration at different temperatures for 2-	101
	hours combustion duration at 25 Lmin ⁻¹	
Figure 5.3	Particle size distribution after 2-hours of combustion	102
Figure 5.4	Particle mass concentrations at different temperatures	103
Figure 5.5	Time evolution of size segregated particles at 700 °C	103
Figure 5.6	Particle number concentration at different flow rates for 2-hours	104
	combustion (burning temperature: 700 °C)	
Figure 5.7	Carbon monoxide evolution at different temperatures for 2-	105
	hours graphite heating	
Figure 5.8	Carbon dioxide evolution at different temperatures for 2-hours	106
	graphite heating	
Figure 5.9	Percentage of graphite converted to combustion products	108
Figure 5.10	Total number concentration of generated particles at different	110
	heating rates and flowrates (a) 10 Lmin ⁻¹ (b) 15 Lmin ⁻¹ (c) 20	
	Lmin ⁻¹ (d) 25 Lmin ⁻¹	
Figure 5.11	Particle size distribution at different heating rates and flow rates	112
	(a) 10 Lmin ⁻¹ (b) 15 Lmin ⁻¹ (c) 20 Lmin ⁻¹ (d) 25 Lmin ⁻¹	
Figure 5.12	Carbon monoxide evolution at different heating rates and flow	113
	rates (a) 10 Lmin ⁻¹ (b) 15 Lmin ⁻¹ (c) 20 Lmin ⁻¹ (d) 25 Lmin ⁻¹	

Figure 5.13	Carbon dioxide evolution at different heating rates and flow	114
	rates (a) 10 Lmin ⁻¹ (b) 15 Lmin ⁻¹ (c) 20 Lmin ⁻¹ (d) 25 Lmin ⁻¹	
Figure 5.14	Percentage of mass loss at different heating rates and flow rates	115
Figure 5.15	SEM analysis of residual Al ₂ O ₃ coated graphite samples	117
	without removing coating layer	
Figure 5.16	SEM analysis of residual coated graphite samples after	118
	removing coating layer	
Figure 5.17	Particle generation in bare and coated graphite at different	120
	temperatures	
Figure 5.18	Particle size distribution for generated particles from bare and	122
	coated graphite samples	
Figure 5.19	Carbon monoxide generation at different temperatures for bare	124
	and Al ₂ O ₃ coated graphite	
Figure 5.20	Carbon dioxide generation at different temperatures for bare	125
	and Al ₂ O ₃ coated graphite	
Figure 5.21	Weight loss percentage in bare and coated graphite samples	126
	after burning for 2-hours	
Figure 5.22	XRD of (a) bare and (b) coated graphite after burning at	127
	different temperatures	
Figure 5.23	Block diagram of categories of particle generation	128
Figure 5.24	Block diagram of particle graphite particle formation	128
Figure 5.25	Block diagram of smaller/ larger particle formation	129
Figure 5.26	Block diagram of reaction occurs in graphite	130
Figure 5.27	Block diagram of particle generation at different temperatures	132