LIST OF ABBREVIATIONS AND SYMBOLS | Abbreviation | Description | |--------------|--| | HTR | High Temperature Reactor | | TRISO | Tristructural Isotropic | | WHO | World Health Organization | | PWR | Pressurized Water Reactor | | BWR | Boiling Water Reactor | | AGR | Advanced Gas-cooled Reactor | | CHTR | Compact High Temperature Reactor | | PHWR | Pressurized Heavy-Water Reactor | | IHTR | Innovative High Temperature Reactor | | LBE | Lead-Bismuth Eutectic | | LOCA | Loss of Coolant Accident | | FP | Fusion Products | | SPECTRA | Sophisticated Plant Evaluation Code for Thermal- | | BNL | Brookhaven National Laboratory | | ECART | Enel Code for Analysis of Radionuclide Transport | | CFD | Computational Fluids Dynamics | | CCN | Cloud Condensation Nuclei | | DMA | Differential Mobility Analyser | | CPMA | Centrifugal Particle Mass Analyser | | ELPI | Electrical Low Pressure Impactor | DMS Differential Mobility Spectrometer FIMS Fast Integrated Mobility Spectrometer EBD Electrical Diffusion Battery CO Carbon monoxide CO₂ Carbon dioxide SMPS Scanning Mobility Particle Sizer PM Particulate Matter PVC Polyvinyl Chloride OPS Optical Particle Sizer XRD X-Ray Diffraction TGA Thermogravimetric Analysis SEM Scanning Electron Microscope EDS Energy Dispersive X-Ray Spectroscopy μ Dimensionless deposition parameter *P*₀ Deposition efficiency Stk. Stokes number A Cross sectional area of tube (m²) U_0 Velocity in tube (m/s) U Velocity in probe (m/s) Angle between the flow direction and sampling L Length of the tube (m) Q Volume flow rate in the tube (m³/s) q Volume flow rate in the probe (m³/s) d_{pr} Diameter of probe (m) τ Relaxation time (s) T Mean temperature of air (K) η Viscosity of air (Pa.s) d_p Particle diameter (m) ρ_p Particle density (kg/m³) C_0 True concentration (#/cm³) C Particle concentration in a sampling probe (#/cm³) D_T Diameter of tube (m) $\eta_{tube,diffu}$ Diffusion loss percentage D Diffusion coefficient (m²/s) B Particle mobility (m.N/s) p Pressure (N/m²) $\eta_{tube,grav}$ Transport efficiency of gravitational deposition V_{ts} Terminal velocity (m/s) g Acceleration due to gravity (m/s²) k_{th} Thermophoretic coefficient Pr Gas Prandtl number T_w Temperature of wall (K) C_m Momentum exchange coefficient C_s Thermal slip coefficient C_c Slip correction factor C_t Temperature jump coefficient k_a Thermal conductivity of gas (W/mK) k_p Thermal conductivity of particle (W/mK) λ Molecular mean free path (m) Z Gravitational deposition parameter $\eta_{ther.loss}$ Thermophoresis deposition loss k Boltzmann constant (J/K) $\eta_{tube, total \, loss} \qquad \qquad Total \, transport \, loss$ X Non dimensional mass E Activation energy (J/mol) R Universal gas constant (J.K⁻¹.mol⁻¹) m_f Final mass (kg) m_0 Initial mass (kg) m Instantaneous mass (kg) *A_e* Pre-exponential factor