List of Figures

Figure 1.1: Various methods of recycling aluminium dross10
Figure 2.1: Photograph of fine aluminium dross powder
Figure 2.2: The X-ray diffraction pattern for white aluminium dross powder50
Figure 2.3: SEM images of white aluminium dross at magnification of 500x, 1000x, 2000x,
5000x and 10,000x
Figure 2.4: SEM-EDS of white aluminium dross
Figure 2.5: Flow sheet and material balance for the production of tamarugite
Figure 2.6: Flow sheet and material balance for synthesis of tamarugite using organic solvent
precipitation
Figure 2.7: Flocculator apparatus used for the jar test
Figure 2.8: Flow sheet and material balance for production of potash alum
Figure 2.9: The gas collecting pipe: rubber cork with steel pipe attached to a long plastic
pipe61
Figure 2.10: Schematic diagram describing the generation of hydrogen gas from aluminium dross
Figure 3.1.a. Photographic image of the formation of tamarugite from the saturated solution
prepared, b. a magnified image of the beaker with tamarugite72
Figure 3.2: X-ray diffraction pattern of tamarugite73
Figure 3.3: Scanning electron micrographs of tamarugite at 500x, 2000x, 10000x, and
20850x

Figure 3.4: SEM-EDS of tamarugite produced from white aluminium dross
Figure 3.5 TGA of tamarugite produced from white aluminium dross77
Figure 3.6: XRD pattern of residual solid of tamarugite obtained after heating it at 1000
°C79
Figure 3.7: Effect of tamarugite addition on coagulation: a. with addition of tamarugite and b.
without tamarugite
Figure 3.8: Jar Test conducted with tamarugite as coagulant
Figure 3.9: Nephelometer used for measuring turbidity of water samples
Figure 3.10: A Jar with raw water showing the settled colloidal particles
Figure 3.11: Mechanism of coagulation with the addition of coagulant
Figure 3.12: Fractional change in turbidity of raw water with the variation of coagulant
dose
Figure 3.13: Flow sheet illustrating the conventional routes of recycling aluminium dross
with synthesis of tamarugite
Figure 4.1: The schematic diagram for the precipitation of tamarugite using the organic
solvents100
Figure 4.2: X – ray diffraction pattern of tamarugite precipitated from: a. Acetonitrile, b.
Ethanol, c. propan-2-ol and d. Tert-butyl alcohol102
Figure 4.3: SEM images of tamarugite precipitated using Acetonitrile at 2000x, 5000x,
10000x and 20000x105
Figure 4.4: SEM-EDS of tamarugite produced using Acetonitrile105

Figure 4.5: SEM images of tamarugite precipitated using Ethanol at 1000x, 2000x, 5000x and
20000x106
Figure 4.6: SEM-EDS of tamarugite produced using Ethanol106
Figure 4.7: SEM images of tamarugite precipitated using Propan-2-ol at 1000x, 2000x, 5000x
and 20000x107
Figure 4.8: SEM-EDS of tamarugite produced using Propan-2-ol107
Figure 4.9: SEM images of tamarugite precipitated using Tert-butyl alcohol108
Figure 4.10: SEM-EDS of tamarugite produced using Tert Butyl Alcohol108
Figure 4.11: Thermogravimetric analysis of tamarugite describing the mass loss with the rise
in temperature111
Figure 4.12: DSC curve of Tamarugite sample during heating112
Figure 4.13: a. Fractional change in turbidity of water using PAC as a coagulant, b. Variation
in pH of the water with the PAC dose, c. Fractional change in turbidity of water using
commercial alum, tamarugite 1 (crystallization) and tamarugite 2 (organic solvent
precipitation) and d. Variation in pH of water117-118
Figure 4.14: Proton NMR Spectra for ethanol after fourth cycle of precipitation of
tamarugite120
Figure 4.15: ¹³ C NMR Spectra for ethanol after fourth cycle of tamarugite precipitation121
Figure 4.16: The XRD patterns of tamarugite precipitated from ethanol during the
recycling122
Figure 4.17: SEM images of tamarugite produced in first cycle of using ethanol123

Figure 4.18: SEM-EDS of tamarugite produced in first cycle of using ethanol123
Figure 4.19: SEM images of tamarugite produced in fourth cycle of utilizing ethanol124
Figure 4.20: SEM-EDS of tamarugite produced in fourth cycle of utilizing ethanol124
Figure 5.1: A schematic diagram illustrating the reaction of white aluminium dross with
aqueous potassium hydroxide and sulphuric acid to produce potash alum132
Figure 5.2: A photograph of crystallized potash alum
Figure 5.3: The crystallization of potash alum on the walls of the beaker134
Figure 5.4: Photographs of the potash alum produced by using white aluminium dross134
Figure 5.5: Schematic of the mass flow during the production of potash alum135
Figure 5.6: The X-ray diffraction pattern of potash alum produced from white aluminium
dross138
Figure 5.7: Scanning electron micrographs of potash alum produced from white aluminium
dross at various magnifications: 200x, 500x, 1000x, 2000x, 5000x and 10,000 x139
Figure 5.8: SEM EDS of potash alum produced from white aluminium dross140-141
Figure 5.9: Thermogravimetric Analysis and Differential Thermal Analysis of potash alum
produced from waste white aluminium dross143
Figure 5.10: The XRD pattern of residual solid after heating potash alum at 1000 °C for 1
hour144
Figure 5.11: $X - ray$ diffraction pattern of the residual solid obtained after the reaction with
potassium hydroxide solution145

Figure 5.12: Utilizatio	n of aluminium dross	for the production of	potash alum146
0		1	1

Figure 6.1: Hydrogen evolution at fixed NaOH concentration: 5.a. 0.5 M NaOH, 5.b. 1 M NaOH, 5.c. 2 M NaOH, 5.d Gas evolution at 15 minutes, 5.e Gas evolution at 90 minutes.
Figure 6.2: Hydrogen evolution at fixed KOH concentration: a. 0.5 M KOH, b. 1 M KOH, c. 2 M KOH, d. Gas evolution at 15 minutes, e Gas evolution at 90 minutes.
Figure 6.3: X – ray diffraction pattern for alumina produced from residual solid obtained after hydrogen generation.
170

Figure 6.4: SEM – EDS report for alumina produced from residual solid......171