Table of Contents

	SUMMARY, OBJECTIVES AND APPROACH	
1.1	Background	1
1.2	Aim of the study	3
1.3	Conventional methods to overcome dye contaminated water	3
1.4 1.5	TiO ₂ based photocatalysts Objectives	4 5
1.6	Systems	6
1.7	Scope of the work	7
	BACKGROUND AND PREVIOUS RESEARCHES	
2.1	Introduction	9
2.2	Dye	10
2.3	Classification of dyes	10
2.3.1	Acidic dyes	10
2.3.2	Vat dyes	11
2.3.3	Basic dyes (cationic dyes)	11
2.3.4	Reactive dyes	11
2.3.5	Disperse dyes	12
2.3.6	Solvent dyes	12
2.3.7	Direct dyes	12
2.4	TiO ₂ photocatalysts	14
2.5	Synthesis technique of TiO ₂ nanoparticles	16
2.5.1	Biological method	16
2.5.2	Hydrothermal method	17
2.5.3	Micro emulsion technique	18
2.5.4	Co-precipitation method	19
2.5.5	Spray pyrolysis	21
2.5.6	Sol-gel method	22
2.6	Regeneration of used photocatalysts	28
2.7	Conclusion from literature search	29
2.8	Technical gap	29
	MATERIALS AND EXPERIMENTAL METHODS	
3.1	Materials	30
3.1.1	Chemicals	30
	(a) For synthesis of photocatalysts	30
	(b) For characterization of wastewater	30
3.1.2	Photocatalysts	31

3.1.3	Reactors	31
	(a) Ultra-Violet photochemical reactor (UV-PCR)	31
	(b) Open pan reactor	32
3.1.4	Wastewater	34
3.2	Methods	34
3.2.1	Characterization of industrial waste water	34
3.2.1.1	pH	34
3.2.1.2	Conductivity	34
3.2.1.3	Total Suspended Solids (TSS)	35
3.2.1.4	Total Dissolve Solids (TDS)	35
3.2.1.5	Biochemical Oxygen Demand (BOD)	35
3.2.1.6	Chemical Oxygen Demand (COD)	36
3.2.1.7	FTIR analysis of industrial wastewater	37
3.2.2	Determination of dye concentration	37
3.2.3	Synthesis of the photocatalysts	38
3.2.3.1	(a) Preparation of undoped TiO ₂ photocatalysts	38
3.2.3.1	(b) Preparation of Fe doped TiO ₂ photocatalysts	40
3.2.3.1	(c) Preparation of I doped TiO ₂ photocatalysts	42
3.2.4	Regeneration of used photocatalyst	44
3.2.4.1	(a) Regeneration of used Fe doped TiO ₂ photocatalyst	44
3.2.4.1	(b) Regeneration of used I doped TiO ₂ photocatalyst	46
3.2.4.1	(c) The photocatalysts without regeneration	46
3.2.4.1	(d) Aeroxide (Degussa) P-25	46
3.2.5	Characterization of the synthesized photocatalysts	46
3.2.5.1	X-Ray Diffraction Analysis (XRD)	46
3.2.5.2	UV-Vis Diffuse Reflectance Spectroscopy (DRS)	47
3.2.5.3	Fourier Transform Infrared Spectroscopy (FTIR)	48
3.2.5.4	X-Ray Photoelectron Spectroscopy (XPS)	48
3.2.5.5	Transmission Electron Microscopy (TEM)	49
3.2.5.6	Energy Dispersive X-ray Spectroscopy (EDX or EDS)	49
3.2.6	Photodegradation of wastewater (Direct Blue 199)	50
3.2.6.1	Exploratory studies (preliminary studies) of photodegradation of dye with TiO_2 photocatalysts	50
3.2.6.2	Adsorption and self-degradation of study of the dye	50
	(a) Adsorption study of the dye on the photocatalysts	51
	(b) Self-degradation of dye (without photocatalysts)	52
	(i) In OPR	52

	(ii) In UV-PCR	52
3.2.6	Kinetic study of dye degradation	53
	(i) In UV-PCR	53
	(ii) In OPR	54
3.2.7	Photocatalytic activity of regenerated photocatalysts	55
3.2.9	Calculation of dye removal/reduction	55
3.2.10	Comparative study for the best photocatalysts	56
	RESULTS AND DISCUSSIONS	
4.1	Characterization of wastewater	57
	Fe DOPED TiO ₂	59
4.2	Characterization of Fe doped TiO ₂ photocatalysts	59
4.2.1	X-Ray Diffraction Analysis (XRD)	59
4.2.2	UV-Vis Diffuse Reflectance Spectroscopy (DRS)	63
4.2.3	Fourier Transform Infrared Spectroscopy (FTIR)	66
4.2.4	X-Ray Photoelectron Spectroscopy (XPS)	68
4.2.5	Structural morphology	74
4.3	Mechanism of TiO_2 photocatalyst and enhancement of its activity by doping of Fe	83
4.4	FTIR analysis of treated simulated dye solution by $Ti_{0.96}Fe_{0.04}O_2$ photocatalysts	86
4.5	Kinetic studies of degradation of dye with Fe doped TiO_2 photocatalysts	87
4.6	Activity of regenerated photocatalysts	89
4.7	Activity of used photocatalysts without regeneration	92
4.8	Comparative study among the undoped, Fe doped TiO_2 and P-25 photocatalysts	92
	I DOPED TiO ₂	
4.9	Characterization of I doped TiO ₂ photocatalysts	93
4.9.1	X-Ray Diffraction Analysis (XRD)	93
4.9.2	UV-Vis Diffuse Reflectance Spectroscopy (DRS)	96
4.9.3	Fourier Transform Infrared Spectroscopy (FTIR)	99
4.9.4	X-Ray Photoelectron Spectroscopy (XPS)	101
4.9.5	Structural morphology	106
4.10	Mechanism of TiO_2 photocatalyst and enhancement of its activity by I doping	113
4.11	FTIR analysis of degraded simulated solution/wastewater by I doped TiO_2 photocatalysts	115
4.12	Kinetic Study of dye degradation with I doped TiO ₂ photocatalysts	116
4.13	Activity of used photocatalysts without regeneration	118

4.14	Activity of regenerated photocatalysts	118
4.15	Comparative study among the undoped, I doped TiO_2 and Aeroxide P-25 photocatalysts	121
4.16	Concluding remarks	122
	CONCLUSIONS AND RECOMMENDATIONS	
5.1	General	123
5.1.1	The dye degradation with Fe doped TiO ₂ photocatalysts	123
5.1.2	The dye degradation with I doped TiO_2 photocatalysts	124
	Summary	125
	Recommendations of future studies	126
	REFERENCES	127
	APPENDICES	135