LIST OF FIGURES

Fig. 1.1: Components suffering from material degradation due to erosion-corrosion1
Fig. 1.2: Typical dependence of erosion on impact angle for ductile materials (curve a)
and brittle materials (curve b)4
Fig. 1.3: Cutting Mechanism during oblique impact erosion
Fig. 1.4: Schematic of erosion procedure in ductile material
Fig. 1.5: Schematic of erosion procedure in brittle material
Fig. 1.6: Temperature dependent erosion rate for different steels
Fig. 1.7: Fe-Cr-C phase diagram19
Fig. 1.8: Iron-chromium binary equilibrium phase diagram21
Fig. 1.9: Modified Schafflers diagram22
Fig. 1.10: Schematic diagram illustrating the development of hot corrosion during (a)
initiation state and (b) propagation stage
Fig. 1.11: Classification of the thermal spray coating process
Fig. 1.12: Schematic showing the principle of ultrasonic shot peening
Fig. 2.1: (a) The central unit and (b) the peening head of the ultrasonic shot peening
device45
Fig. 2.2: Tensile Specimen Dimensions
Fig. 2.3: Salt coating set-up (a) Hot plate for salt coating and (b) Air brush (Model-
BD203)
Fig. 2.4: Schematic diagram of the erosion test rig
Fig. 3.1: Optical micrograph of (a) as received sample (b) heat-treated at 1200°C and (c)
SEM micrograph56
Fig. 3.2: X-ray diffraction pattern of (a) as received and (b) HT at 1200°C57

Fig. 3.3: (a) CCT curve and (b) TTT curve for Type 446 Stainless steel
Fig 3.4: SEM/EDS analysis of secondary phase precipitates
Fig. 3.5: TEM image of received material (a) polygonal ferritic grains (b) arrays of
dislocations (c) truncated cuboid precipitate of the second phase (d) elongated second
phase precipitate
Fig 3.6: The hardness of the Specimen under-treated conditions
Fig. 3.7: (a) Engineering stress-strain curve and (b) True stress($\ln \sigma$) vs. True strain($\ln \epsilon$)
plot for the base material at room temperature (RT)
Fig. 3.8: SEM fracture surface of base metal at (a) RT (b) 350°C (c) 650°C 64
Fig. 3.9: (a); (b) SEM/EDS micrograph; (c) Particle size distribution of erodent (Al ₂ O ₃)
Fig. 4.1: Dependence of ER on the temperature at an impingement angle of 30°, 60° and 90°.
Fig. 4.2: Weight loss vs. time for 446SS at variable impact under (a) RT and (b) 650°C
Fig. 4.3: Wear scar and 3D interactive plot of the tested material
Fig. 4.4: Erosion scar profile comparison for 30°, 60° and 90° angle of incidence after 1hr
test
Fig 4.5: Hardness along the cross-section to impact surface
Fig 4.6: Worn surface topography of tested sample at RT: a)30° (b) 60° and (c) 90° 74
Fig. 4.7: SEM micrograph of eroded scar at 30° under (a) RT (b) 650°C76
Fig. 4.8: SEM micrograph of eroded scar at 60° under (a) RT (b) 650°C76
Fig 4.9: SEM micrograph of eroded scar at 90° under (a) RT (b) 650°C77
Fig 4.10: (a) SEM micrograph of eroded scar at 30° and (b) cross-section profile of the
near surface of 446SS at 650°C and 30° impingement angle

Fig.5.1: Macrograph of (a) un-eroded and (b-f) eroded surface under test temperature of
350°C, 450°C, 550°C, 650°C and 750°C respectively
Fig. 5.2: Residual normal probability plots for Erosion rate
Fig 5.3: 2D-contour and 3D- surface plot showing Erosion rate variation with (a) test
temperature-impact velocity (b) impact velocity-impact angle (c) test temperature-
impact angle
Fig. 5.4: SEM macrograph of tested sample at (a) 450°C, 55m/s,45° and (b) 650°C,
85m/s, 45°
Fig. 5.5: Average Roughness (R _a) values at (a) 450°C, 55m/s, 45° (b) 650°C, 85m/s, 45°.
Fig. 5.6: Main effects plot for Erosion rate with test temperature, impact angle and impact
velocity
Fig. 5.7: Erosion rate comparison between ANN predicted values and experimented
values90
Fig. 5.8: Optimum results for minimum erosion rate
Fig. 6.1: Macrograph of hot corroded samples for 20 h at (a) 550°C (b) 650°C (c)
750°C97
Fig. 6.2: Weight gain per unit area vs temperature showing the effect of hot corrosion at
550,650 and 750°C for 20 h in air
Fig. 6.3: SEM micrograph of cross-section of hot corroded samples showing the effect
of diffusion of corrosive species at (a) 750°C (b) 650°C and (c) 550°C99

Fig. 6.4: XRD pattern of the oxides formed during hot corrosion of salt mixture coated
sample in air for 20 h under variable temperature 100
Fig. 6.5: SEM/EDX showing morphology and concentration of different elements of salt
mixture deposited sample exposed at 550°C for 20 h 100
Fig. 6.6: SEM/EDX showing morphology and concentration of different elements of salt
mixture deposited sample exposed at 650°C for 20 h 101
Fig. 6.7: SEM/EDX showing morphology and concentration of different elements of salt
mixture deposited sample exposed at 750°C for 20 h 101
Fig. 6.8: Secondary electron X-ray mapping of cross-section of the two salt mixture
deposited sample exposed at 750°C for 20 h, focussing the elemental distribution (a)
cross-section, (b) Iron, (c) Chromium (d) Oxygen
Fig. 6.9: Secondary electron X-ray mapping of cross-section of the two salt mixture
deposited sample exposed at 650°C for 20 h, focussing the elemental distribution (a)
cross-section, (b) Iron, (c) Chromium (d) Oxygen
Fig. 6.10: Plot of Erosion rate vs Impact angles for corroded-eroded samples at (a) 550°C
(b) 650°C (c) 750°C 104
Fig. 6.11: Erosion rate vs time graph of the sample at 30° impact angle 105
Fig. 6.12: Annotated view of Corroded-Eroded surface at 90° impact angle at 750°C.
Fig. 6.13: Annotated cross-sectional view of Corroded-Eroded surface at 90° impact
angle at 750°C
Fig. 6.14: SEM micrograph showing the scar at 30° for (a) 650°C (b) 750°C 107
Fig. 6.15: SEM micrograph showing the scar at 60° for (a) 650°C (b) 750°C 108
Fig. 6.16: SEM micrograph showing the scar at 90° for (a) 650°C (b) 750°C 108
Fig. 7.1: Cross-sectional optical micrograph of 2min USSPed sample

Fig. 7.2: Micro-hardness variation along the depth from the surface118
Fig. 7.3: Surface topography image of 446SS samples (a) 1min USSPed (b) 2 min
USSPed (c) 3 min USSPed119
Fig. 7.4: Average roughness variation with USSP duration
Fig. 7.5: X-ray diffraction of the non-USSPed specimen and variable time USSPed
samples
Fig. 7.6: Average crystallite size and Mean lattice strain variation with USSP duration.
Fig. 7.7: TEM micrographs of 446SS (a,b) Non-USSPed and (c,d) 2min USSPed 122
Fig. 7.8: Weight gain per unit area vs Temperature during hot corrosion of Non-USSPed
and 2min USSPed samples at 550, 650 and 750°C for 20 h in air
Fig. 7.9: Macrograph of 2min USSPed and hot corroded samples for 20 h at (a) 550°C
(b) 650°C (c) 750°C
Fig. 7.10: SEM/EDX showing morphology and concentration of different elements of
salt mixture deposited 2min USSPed sample exposed at (a) 550°C (b) 650°C and (c)
750°C for 20 h
Fig. 7.11: XRD pattern of the oxides formed during hot corrosion of salt mixture coated
2min USSPed samples for 20 h under variable temperature126
Fig. 7.12: Cross-sectional SEM micrograph of hot corroded 2min USSPed samples
showing the effect of corrosive species diffusion at (a) 750°C and (b) 650°C127
Fig. 7.13: Cross-sectional X-ray mapping of the salt mixture deposited 2min USSPed
sample exposed at 750°C for 20 h, focussing the elemental distribution (a) cross-section,
(b) Oxygen, (c) Iron, (d) Chromium

Fig. 7.14: Cross-sectional X-ray mapping of the salt mixture deposited 2min USSPed
sample exposed at 750°C for 20 h, focussing the elemental distribution (a) cross-section,
(b) Oxygen, (c) Chromium, (d) Iron 128
Fig. 7.15: SEM micrograph showing erosion scar at 550°C for impingement angle of (a)
30° and (b) 90° 129
Fig. 7.16: SEM micrograph showing erosion scar at 650°C for impingement angle of (a)
30° and (b) 90°
Fig. 7.17: SEM micrograph showing erosion scar at 750°C for impingement angle of (a)
30° and (b) 90°
Fig.7.18: Erosion rate vs. impingement time at (a) 30° impingement angle and (b) 90°
impingement angle
Fig.7.19: Schematic showing the effect of SNC on hot-corrosion on erosion of the 446SS
at elevated temperature
