
 

 

CHAPTER 5 

 

MODELLING AND OPTIMIZATION OF 

EROSION PARAMETERS USING RSM AND 

ANN 

 

5.1 INTRODUCTION 

The erosion is dependent on several factors and to study the effect of each factor in 

combination with other factors will leads to several undesirable experimentations. 

Statistical modelling is a tool which helps to eradicate the redundancy during 

experimentation and also to optimize the basic objective function. Studying the effect of 

these variables, there is an enormous scope of implementing statistical techniques for 

analysis, prediction, and optimization to obtain the maximum benefit. The present 

investigation addresses this aspect by using Response Surface Methodology (RSM). 

RSM is a multivariate technique based on the fit of a polynomial equation to statistical 

data, with an objective to simultaneously optimize the levels of these variables to attain 

the best system performance. To approximate a response function to experimental data, 

a quadratic response surface, i.e., Central Composite Rotatable Design (CCRD) is used 

in the present study. 

Artificial neural network (ANN) offers an alternative to the polynomial regression 

method as a modelling tool. Advances in computing power have enabled the application 

of ANN in providing non-linear modelling for response surfaces and optimization. 

McCulloch and Pitts [164] developed an ANN model based on their knowledge of 

neurology. Paul Werbos [165] contribution to the back-propagation learning method is 
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recognized as the most significant contribution. Velten et al. [166] and Zhang et al. [167] 

were among the first to implement ANN to analyze the wear of polymer composites. 

Palavar et al. [168] used ANN to predict the wear behaviour of IN706 superalloy. To 

predict the wear behaviour of aluminium alloys and its composites, ANN has been widely 

used [169–171].  More recently work by Suresh et al. [172] reports successful 

implementation of ANN in predicting solid particle erosion in composites. A multilayer 

feed-forward network with a back-propagation training algorithm has been used widely 

in wear prediction [167]. Hence, artificial neural networks (ANNs) have been extensively 

used for the prediction of wear data in tribological tests [173]. In view of the above, 

erosion tests is conducted to evaluate the high-temperature steady-state erosion rate of 

Type 446 SS at the higher temperature and the parameters responsible for minimum loss 

of material under erosion is optimized with the help of RSM and ANN technique. 

5.2 RESULTS AND DISCUSSION 

The digital photograph of the eroded scar surface is shown in Fig.5.1. It is seen 

that the appearance on the tested surface differs with test conditions due to the formation 

of an oxide layer on the surface when exposed to high temperatures. These oxides are 

also considered to act as a protective layer, thereby, prevents the direct contact of 

abrasives with the material surface. Further, worn surfaces were examined using a 

scanning electron microscope (FEI Nova NanoSEM450) to determine the possible 

erosion mechanism. 
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Fig.5.1: Macrograph of (a) un-eroded and (b-f) eroded surface under test temperature 

of 350℃, 450℃, 550℃, 650℃ and 750℃ respectively. 

 

5.2.1 Central composite rotatable design (CCRD) 

CCRD presented by Box and Wilson [174] is most widely preferred for the 

second-order response surface model as they are relatively efficient concerning the 

number of runs required. The second-order model is usually required to approximate the 

curvature in the true response surface when the experimenter is close to optimum [175].  

The fitted second-order response surface model is given by equation (5.1): 

η = βo + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1  + ∑ 𝛽𝑖𝑖𝑥𝑖

2𝑘
𝑖=1  + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘
𝑖<𝑗=2    (5.1) 

 

Where η is response; 𝑥𝑖 (1, 2,…k) is the coded level of k quantitative variables; βo is 

the constant term, and βi, βii and βij are the coefficients of the linear expansion. 

Full uniformly routable central composite design presents the following 

characteristics: 

a) Requires an experiment number according to N = k2 + 2k + Cp, where k is the 

factorial number and (Cp) is the replicate number of the central point. 

(a) 

(e) 

(c) 

(d) 

(b) 

(f) 
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b) α- value depends on the number of variables and can be calculated as α = 2(k-p)/4. 

In the present investigation, its value is 1.682 

c) all factors are studied in five levels (-α, -1, 0, +1, +α). 

Table 5.1 presents the process parameters at five different levels, and Table 5.2 shows 

the design matrix of twenty iterations, according to the CCRD technique, to calculate the 

erosion rate of the sample. To analyze the regression model, a software package of 

MINITAB 18 has been used. 

 

Table 5.1:  Erosion parameters and their levels . 

Parameters Notation Units Levels 

-1.682 -1 0 1 1.682 

Test 

temperature 

A ℃ 350 450 550 650 750 

Impact 

velocity 

B m/s 40 55 70 85 100 

Impact 

angles 

C Degree 30 45 60 75 90 

 

5.2.2 Analysis of variance (ANOVA) and regression model for Erosion rate 

The regression coefficients evaluated using ANOVA have significantly 

determined each factor regarding erosion rate as shown in Table 5.3. The model for 

erosion rate employing R2 = 94.54% signifies that the model is compatible with total 

variance at 95% confidence limit. P-values less than 0.05 reveal that the model is 

statically significant for optimization.  
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Table 5.2: Experimental results for Erosive Wear of Type 446 stainless steel. 
 

 

Experimental 

Run 

Erosion Parameters Erosion Rate 

(gm/gm x10-5) 

A B C 

1 550 70 60 10.151 

2 550 70 60 10.158 

3 750 70 60 15.463 

4 450 85 45 10.395 

5 550 70 30 11.269 

6 650 55 75 12.539 

7 350 70 60 7.936 

8 550 70 60 10.148 

9 550 100 60 18.095 

10 650 85 75 14.503 

11 550 40 60 9.523 

12 550 70 90 8.573 

13 450 55 45 6.140 

14 550 70 60 10.143 

15 550 70 60 10.156 

16 450 55 75 5.654 

17 550 70 60 10.139 

18 450 85 75 8.746 

19 650 55 45 14.601 

20 650 85 45 16.269 
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Table 5.3: Analysis of variance for Erosion rate. 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 193.938 21.549 19.25 0.000 

Linear 3 170.326 56.775 50.73 0.000 

Test 

temperature 

1 115.034 115.034 102.78 0.000 

Impact velocity 1 47.223 47.223 42.19 0.000 

Impact angles 1 8.068 8.068 7.21 0.023 

Square 3 21.435 7.145 6.38 0.011 

2-Way 

Interaction 

3 2.177 0.726 0.65 0.602 

Error 10 11.192 1.119   

Lack-of-Fit 5 11.192 2.238 41323.96 0.000 

Pure Error 5 0.000 0.000   

Total 19 205.130    

 

Response surface regression equation is obtained as: 

Erosion rate = 10.175 + 2.902 A + 1.860 B – 0.769 C + 0.378 A*A + 1.224 B*B 

 – 0.250 C*C - 0.464 A*B - 0.212 A*C - 0.108 B*C 

R2 = 94.54% 
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Normal probability plot shown in Fig. 5.2 confirms that all the residues are falling 

on a straight line with errors being positioned normally and no scattering is observed. 

The percentage contribution of each parameter measures tests temperature as the most 

influencing parameter with 56.07%. 

Fig. 5.2: Residual normal probability plots for Erosion rate. 

Fig. 5.3 shows the 3D and 2D- surface contour plots of variation in erosion rate 

with the input parameter. It is observed from the contours that an increase in impact 

velocity, impact angle and test temperature plays a vital role. With an increase in input 

parameters, the material removal mechanisms like cutting and plastic deformation are 

more intense. Therefore, the ER is seen to increase with the increase in input parameters. 

Fig. 5.4 shows the SEM micrograph of the worn surface which substantiates the above 

statement. This micrograph shows that keeping one parameter constant, an increase in 

two input variables increases the width and depth of cut. Thereby, plastically deforming 
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the materials in the form of lips. Similar behavior was reported in the  chapter 4 (Sec. 

4.2.1). [176].   

 

 

 

 

 

 

 

 

 

 

 

Fig 5.3: 2D-contour and 3D- surface plot showing Erosion rate variation with (a) test 

temperature-impact velocity (b) impact velocity-impact angle, and (c) test temperature- 

impact angle. 

The average surface roughness of the worn surface was analyzed using Atomic 

Force Microscope (AFM). The results obtained are shown in Fig. 5.5 and the values are 

tabulated in Table 5.4. Here, a rougher surface with more irregularities in topography is 

observed as Type 446SS was eroded using higher values of “test temperature – impact 

velocity”, shown in Fig. 5.3(a).  Also, on selecting “impact velocity – impact angle”, 

(Fig. 5.3(b)) it is observed that mild erosion rate occurs with lower values of input 
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parameters. With further increase in impact velocity, erosion rate significantly increases 

for a moderate increase in impact angles. Whereas, reduction in erosion rate is recorded 

for higher values of both the input parameters. This indicates the occurrence of a steady 

state of erosive wear. This may be due to the formation of a work-hardened subsurface 

under the impact area. 

 

 

 

 

 

 

 

 

Fig. 5.4: SEM macrograph of tested sample at (a) 450℃, 55m/s,45⁰ and (b) 650℃, 

85m/s, 45⁰. 

 

 

 

 

 

 

Fig. 5.5: Average Roughness (Ra) values at (a) 450℃, 55m/s, 45⁰, and (b) 650℃, 

85m/s, 45⁰. 
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Table 5.4: Surface roughness of un-eroded and eroded surfaces. 

Surface Roughness Un-eroded  Eroded surfaces 

 450℃, 55m/s, 45⁰  650℃, 85m/s, 45⁰ 

Ra(µm) 0.0104 0.158 0.224 

Considering the input parameters “test temperature- impact angle”, the erosion 

rate is seen to increase with higher values of input parameters. However, beyond a certain 

level, with a further increase in impact angle, the erosion rate is reduced to a moderate 

value. This is due to the smeared surface created over a larger area during low angle 

impact. Still, the test temperature effect is more influencing. Main effect plot for erosion 

rate with test temperature, impact velocity, and impact angle is shown in Fig. 5.6. 

 

 

Fig. 5.6: Main effects plot for Erosion rate with test temperature, impact velocity and 

impact angles. 
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5.2.3 Prediction using artificial neural network 

The database is divided into three categories, namely: (i) a validation category 

(ii) a training category (iii) a test Category. In the training phase, each neuron receives 

the input signals Xi from n neurons, assigns the weights (Wij) of the synapses to each of 

these inputs, according to Eq. (5.2), and passes the result as the output signal Yi, after 

applying the sigmoid function, Eq. (5.3), as the transfer function. 

Yi =∑ 𝑥𝑖𝑤𝑖𝑗
𝑛
𝑖=1      (5.2) 

                             𝑓 =  1

1+𝑒−𝑥     (5.3) 

The error is minimized by adjustments of the weights according to the following 

mathematical equation (5.4): 

                                      ΔWij = η 
𝜕𝐸

𝜕𝑊𝑖𝑗
        (5.4) 

where η is the learning rate parameter. 

 

 

 

 

 

 

Fig. 5.7: Erosion rate comparison between ANN predicted values and experimented 

values. 
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The training parameters for the present study are listed in Table 5.5. A well 

trained ANN can be used to predict new results in the same knowledge domain. During 

the evaluation 20 data sets have been used to train the network and optimized parameters 

for minimum erosion obtained through RSM have been used to test the network. Fig. 5.7 

shows the prediction quality of ANN structures based on mean square error.  

Table 5.5: ANN training parameters. 

Input parameters for training Values 

Learning parameter (η) 0.001 

No. of iterations 1000000 

No. of layers 3 

No. of neurons in the input layer 3 

No. of neurons in the hidden layer 5 

No. of neurons in the output layer 1 

  

Table 5.6 shows that error for experimented sets lies in the range of ~21%. And 

the error for the optimized parameter is 9.12%, as shown in Table 5.7, which 

establishes the validity of neural computation. 

5.3 OPTIMIZATION AND VALIDATION OF THE MODEL  

The aim of validating the model is fulfilled by comparing the predicted results 

of the model with experimental results. The optimized conditions are listed in Fig. 5.8, 

considering the outline erosion process to be minimized, and values for predicted and 

experimented results of erosion rate are tabulated in Table 5.7 and Table 5.8 

respectively. 
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Table 5.6: Comparison of experimental and neural network output for test data set. 

Experimen

tal Run 

Input (Erosion Parameters) Output                       

(Erosion Rate x10-5  g/g) 

Error 

% 

Test 

temperature 

Impact 

velocity 

Impact  

angle 

Experiment

al 

ANN 

1 550 70 60 10.151 10.787 6.26 

2 550 70 60 10.158 10.787 6.19 

3 750 70 60 15.463 15.911 2.90 

4 450 85 45 10.395 10.763 3.54 

5 550 70 30 11.269 13.285 17.90 

6 650 55 75 12.539 10.869 -13.31 

7 350 70 60 7.936 6.3646 -19.81 

8 550 70 60 10.148 10.787 6.29 

9 550 100 60 18.095 15.407 -18.80 

10 650 85 75 14.503 14.3295 -1.19 

11 550 40 60 9.523 7.481 -21.44 

12 550 70 90 8.573 8.623 0.58 

13 450 55 45 6.140 7.2216 17.61 

14 550 70 60 10.143 10.787 6.34 

15 550 70 60 10.156 10.787 6.21 

16 450 55 75 5.654 5.792 2.44 

17 550 70 60 10.139 10.787 6.39 

18 450 85 75 8.746 8.504 -2.76 

19 650 55 45 14.601 13.118 -10.15 

20 650 85 45 16.269 15.974 -1.81 
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RSM has been used to get the maximum amount of information in a short period 

of time and with the least number of experiments. To investigate the effect of 

temperature-velocity-angle, for a constant discharge, 3D response surface is plotted. 

These plots are useful in analyzing the interaction between parameters and to obtain their 

optimum condition for minimizing erosion rate. The effect of input parameters, as well 

as maximum and minimum points for erosion, are shown in Fig 5.3(a-c). The interaction 

between input parameters at low temperature, moderate velocity and high impact angle 

are the most optimized parameters for minimizing loss of materials.  

The ANN used focuses on establishing a relationship between input and output 

parameters. Its evaluation capabilities are based on a comparison of predicted capabilities 

versus the real ones. It was important to test the neural model abilities to generalize and 

predict the synergistic effect of input parameters on the erosion behavior of the material. 

Based on neural network analysis ANN showed quite good performance in predicting 

the erosion rate. This network was used to work with DOE and RSM to optimize the 

erosion rate. The optimization is performed using Minitab Response Optimizer, and the 

optimum parameters that resulted in minimum erosion rate are: test temperature of 

350℃, impact velocity of 55m/s and impact angle of 90°. It is observed that as the test 

temperature and impact velocity increases, the erosion rate also increases. However, with 

an increase in impact angle, the erosion rate decreases. The materials exhibit ductile 

behavior, therefore, results in reduced erosion at a normal impact. Three confirmatory 

tests are performed to check the adequacy of the predicted model with the experimented 

model. It is inferred that the error lies between 7.54% and 12.81%. This error is due to 

process incapability since the machine follows a normal distribution and therefore, 

replication of any experimented results follows deviation. The error is assessed as small, 

and therefore the model is satisfactory. 
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Fig. 5.8: Optimum results for minimum erosion rate. 

 

Table 5.7: Predicted values of the model for erosion rate. 

Parameters Optimum values Erosion rate (g/g x10-5) 

CCRD values ANN values 

Test temperature 350℃  

3.618 

 

3.948 Impact velocity 55 m/s 

Impact angles 90⁰ 

 

Table 5.8:  Experimented values for erosion rate. 

Test No. Optimum values Erosion rate (g/g x10-5) Error (%) 

1 350℃ 

55 m/s 

90⁰ 

4.081 12.81 

2 3.891 7.54 

3 3.997 10.45 
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5.4. CONCLUSIONS 

To avoid redundancy in a number of experiments and time consumption, 

optimization of erosion rate with variable input parameters is essential. Following are the 

conclusions drawn from the present study: 

1.    The results reveal that “test temperature” is the most dominant factor for erosion rate 

followed by impact velocity and impact angle. 

2.   The mathematical model helps in achieving the optimum parameters, of 350℃ test 

temperature, 55 m/s impact velocity, and 90⁰ impact angle, to achieve minimum erosion 

rate. 

3.    Conformity tests with error value between 7.54% and 12.81% indicated that the 

model equation is in good agreement with experimental values. 

4.   The results are in accordance with the established theory of maximum wear rate with 

oblique impact and vice-versa. 

5.     The artificial neural network technique was applied to predict the erosion rate of 

Type 446SS. The error of 9.12% in the result shows the acceptability of predicted data 

when compared to measured values. 

 

 

 


