LIST OF FIGURES

Figure	Figure Caption	Page No.
No.		
1.1	Different phases of anaerobic digestion	7
3.1	Fungal strains (a) P. chrysosporium (b) P. ostreatus	51
3.2	Methodology of NaOH and combined pretreatment of sawdust	63
3.3	Schematic diagram of the anaerobic digestion system	65
4.1	Effect of biological treatment on sawdust (a) XRD profile (b) SEM	73
	micrograph of P. chrysosporium and (c) P. ostreatus treated sample	
4.2	Effect of NaOH pretreatment of sawdust on (a) sCOD, (b) phenolic	77
	content, (c) glucose and (d) VFA	
4.3	FTIR spectra: (a) NaOH and NaOH-microwave pretreatment (b)	80
	NaOH-autoclave pretreatment of sawdust	
4.4	XRD pattern of native and treated sawdust	83
4.5	Crystallinity and cellulose profile: (a) NaOH, (b) NaOH-microwave	85
	and (c) NaOH-autoclave sawdust after pretreatment	
4.6	SEM images of sawdust samples: (a) native, (b) microwave without	87
	NaOH, (c) NaOH , (d) NaOH-microwave , (e) autoclave without	
	NaOH and (f) NaOH-autoclave	
4.7	Influence of autoclaving time for NaOH-autoclave pretreatment (a)	88
	sCOD and phenolic compound variation and (b) compositional	
	changes and lignin solubilisation	
4.8	Effect of pretreatment on anaerobic digestion for biogas yield from	90
	sawdust	
4.9	Effect of pretreatment on rate constant of bioconversion (a) native	92
	and (b) treated sawdust	
4.10	X-ray diffraction spectrum of OFMSW: (a) before pretreatment, (b)	97
	after thermal pretreatment, (c) after chemical pretreatment and (d)	
	after thermo-chemical pretreatment	

4.11	FTIR spectrum of OFMSW sample: (a) before treatment, (b) after	100
	thermal treatment, (c) after chemical treatment and (d) after thermo-	
	chemical treatment	
4.12	SEM micrographs of OFMSW sample: (a) before pretreatment, (b)	102
	after thermal pretreatment, (c) after chemical pretreatment and (d)	
	after thermo-chemical pretreatment	
4.13	Effect of biological pretreatment by P. chrysosporium (PCT) and P.	104
	ostreatus (POT) on OFMSW solubilisation (a) sCOD (b) VFA and	
	(c) glucose and (d) phenolic content	
4.14	Biogas production from different pretreatments of OFMSW	106
4.15	Hydrolysis of liquidised OFMSW slurry at different NaOH	107
	concentrations for (a) sCOD and (b) VFA estimation with time	
4.16	Actual vs. predicted values of response for (a) VFA and (b) sCOD	110
	chemically treated OFMSW	
4.17	3D surface response for sCOD (a-c) and VFA (d-f) yield: (a) and (d)	113
	NaOH concentration vs. time, (b) and (e) NaOH concentration vs.	
	temperature, c and (f) time vs. temperature of chemically treated	
	OFMSW	
4.18	Biogas yield at different NaOH concentration (b) comparison	120
	between experimental and theoretical biogas produced at 4, 20, 36	
	g/L and optimised condition of NaOH for chemically treated	
	OFMSW	
4.19	Logarithmic values of biogas production vs. time of operation for 4,	121
	20, 36 and optimised 18.4 g/L NaOH treated OFMSW sample.	
4.20	Effect of thermo-chemical treatment (a) NaOH dose (b) temperature	123
	and (c) time on OFMSW solubilisation in terms of sCOD, VFA and	
	phenolic content	
4.21	RSM optimisation of thermo-chemical treatment of OFMSW, (a),	129
	(b), (c) effect of NaOH dose and temperature, (d), (e), (f) effect of	
	temperature and time and (g), (h), (i) effect of NaOH dose and time	
	on sCOD, VFA and phenolic content	

4.22	Biogas production from treated and untreated OFMSW	132
4.23	3D plots of co-digestion depicting the effect of influencing	140
	parameters on biogas production	
4.24	First-order model of co-digestion	143
4.25	Biogas production at optimised condition and kinetic modelling for	144
	co-digestion	