TABLE OF CONTENTS

<u>CONTENTS</u> <u>PAGE NO.</u>				
	<u>PAGE NO.</u>			
List	xvi			
List	xix			
List	xxi			
List	xxiv			
Preface			xxvi	
Cha	apter 1			
Introduction			1	
1.1	Biofuel su	ustainability	1	
1.2	Generatio	ons of biofuels	2	
	1.2.1	First generation of biofuel	2	
	1.2.2	Second generation of biofuel	2	
	1.2.3	Third generation of biofuel	3	
	1.2.4	Fourth generation of biofuel	3	
1.3	Biogas as biofuel		4	
	1.3.1	Biogas composition	4	
	1.3.2	Advantages of biogas technology	5	
	1.3.3	Biochemistry and microbiology of anaerobic digestion	5	
1.4	Pretreatment methods		8	
1.5	Locally av	vailable biomass in Varanasi	9	
	1.5.1	Agricultural residue	10	
	1.5.2	Other wastes	10	
1.6	Origin of	the problem	10	
Cha	pter 2			
Review of Literature 12				
2.1				
4.1	Biogas scenario in India 12			

2.2	Selection of feedstock		
	2.2.1	Criteria for feedstock selection	13
	2.2.2	Biogas production from liquid waste	15
	2.2.3	Biogas production from solid waste	18
2.3	Lignocellu	uloses as biogas substrate	20
	2.3.1	Composition of lignocellulosic residue	20
	2.3.2	Pretreatment methods for lignocelluloses and biogas	21
		production	
2.4	Organic fr	raction of municipal solid waste as biogas substrate	29
	2.4.1	MSW composition and characteristics	29
	2.4.2	MSW management methods	32
	2.4.3	OFMSW Pretreatment and biogas production	35
2.5	Assessment of pretreatment		
	2.5.1	Effect of the pretreatment on the structure of substrate	39
	2.5.2	Effect of pretreatment on the hydrolysate	41
2.6	Co-digesti	ion to improve the biogas production from OFMSW	41
2.7	Effect of c	operating process parameters on anaerobic digestion	44
2.8	Summary of literature review		
2.9	Research gap		47
2.10	Objectives of the present work		48
Chaj	pter 3		
Mate	rials and N	lethods	49
3.1	Materials		49
	3.1.1	Substrates	49
	3.1.2	Chemicals and reagents	49
	3.1.3	Microorganisms	50
3.2	Analytical	l methods	51
	3.2.1	Proximate analysis	51
	3.2.2	Ultimate analysis	52

	3.2.3	Compositional analysis	53
	3.2.4	Calorific value estimation by bomb calorimeter	54
	3.2.5	Preparation of spore suspension and spore count	55
	3.2.6	sCOD estimation	56
	3.2.7	Glucose determination	56
	3.2.8	Volatile fatty acids (VFA) determination	56
	3.2.9	Phenolic content determination	57
	3.2.10	Fourier transform infrared spectroscopy (FTIR)	57
	3.2.11	X-ray diffraction analysis (XRD)	57
	3.2.12	Scanning electron microscope (SEM) analysis	58
	3.2.13	Gas volume quantification	58
	3.2.14	Gas composition analysis	58
	3.2.15	Potassium determination in manure	59
3.3	Framewor	k of models used	59
	3.3.1	Response surface methodology (RSM)	59
	3.3.2	First order model for anaerobic digestion	59
	3.3.3	Modified Gompertz model	60
3.4	Sawdust collection and characterisation		61
3.5	Sawdust p	pretreatment	61
	3.5.1	Selection of potential chemical reagent	61
	3.5.2	NaOH treatment	62
	3.5.3	NaOH-microwave treatment	62
	3.5.4	NaOH-autoclave treatment	62
	3.5.5	Biological treatment	63
	3.5.6	Optimisation of NaOH-autoclave treatment	64
3.6	Anaerobic	e digestion of sawdust	64
3.7	OFMSW collection and characterisation		
3.8	OFMSW pretreatment		

	3.8.1	Chemical treatment	66
	3.8.2	Thermal treatment	66
	3.8.3	Thermo-chemical treatment	66
	3.8.4	Biological pretreatment	66
3.9	Anaerobic	digestion of OFMSW	67
3.10	Optimisati	ion of chemical treatment of OFMSW by RSM	67
3.11	Optimisati	ion of thermo-chemical treatment of OFMSW by RSM	68
3.12	Anaerobic	digestion and kinetic modelling	69
3.13	Co-digesti	on approaches	69
	3.13.1	Suitable C/N ratio selection	69
	3.13.2	Optimisation of process parameters of co-digestion by	70
		RSM	
	3.13.3	Kinetic modelling of co-digestion	70
3.14	Intermedia	ate variation and end product characterisation	70
Cha	pter 4		
Resu	lts and Disc	cussion	71
4.1	Physicoch	emical characterisation of sawdust and inoculum	71
4.2	Effect of pretreatment on sawdust solubilisation		
	4.2.1	Effect of biological treatment on sawdust	72
	4.2.2	Selection of potential chemical reagent	74
	4.2.3	Effect of NaOH and combined treatment on sCOD and	75
		VFA	
	4.2.4	Effect of pretreatment on phenolic content and glucose	75
	4.2.5	Effect of pretreatment on sawdust composition	78
	4.2.6	FTIR study of treated and native sawdust	78
	4.2.7	Effect of pretreatment on sawdust crystallinity	83
	4.2.8	Effect on surface morphological structure of treated and	86
		native sawdust	
	4.2.9	Influence of time for NaOH-autoclave pretreatment	88

4.3	Anaerobic digestion of sawdust		
	4.3.1	Biogas production from sawdust	89
	4.3.2	Bio-energy conversion rate	91
4.4	Physico-c	chemical characterisation of OFMSW and inoculum	93
4.5	Effect of	thermal, chemical and thermo-chemical treatment on	94
	OFMSW	solubilisation	
	4.5.1	Effect of pretreatment on physico-chemical	94
		characteristics of OFMSW	
	4.5.2	Crystallinity study of OFMSW by XRD	95
	4.5.3	FTIR study of OFMSW	98
	4.5.4	Effect of pretreatment on surface structure of	102
		OFMSW	
	4.5.5	Effect of biological treatment on OFMSW solubilisation	103
	4.5.6	Effect of different pretreatments on biogas production	105
4.6	Optimisation of chemical treatment of OFMSW by RSM 1		
	4.6.1	Solubilisation characteristics of NaOH treated OFMSW	106
		samples	
	4.6.2	Box-behnken design and statistical analysis of chemical	108
		treatment of OFMSW	
	4.6.3	Analysis of variance (ANOVA) for chemical treatment	108
		of OFMSW	
	4.6.4	Optimisation of pretreatment parameters for chemical	112
		treatment	
	4.6.5	RSM model validation for chemical treatment of	115
		OFMSW	
4.7	Experime	ental biogas evaluation	115
4.8	Kinetic m	nodel evaluation for chemically treated OFMSW	117

	4.8.1	First order model	117
	4.8.2	Modified Gompertz model	117
	4.8.3	Kinetic model comparison	119
4.9	Optimisati	ion of thermo-chemical treatment of OFMSW	121
	4.9.1	Effect of thermo-chemical treatment on OFMSW	121
		solubilisation	
	4.9.2	Box-Behnken design for thermo-chemical treatment of	124
		OFMSW	
	4.9.3	Model fitting and ANOVA analysis	126
	4.9.4	Effect of influencing factors on OFMSW solubilisation	127
	4.9.5	Model validation for thermo-chemically treated OFMSW	130
4.10	Anaerobic	digestion and kinetics of thermo-chemical treatment of	131
	OFMSW		
	4.10.1	Biogas production of thermo-chemically treated	131
		OFMSW	
	4.10.2	Kinetic modelling of thermo-chemical treatment	132
4.11	Co-digesti	on Results	133
	4.11.1	Physicochemical characterisation of activated sewage	133
		sludge	
	4.11.2	C/N ratio selection for co-digestion	134
	4.11.3	RSM optimisation of process parameter of co-digestion	135
	4.11.4	Box-Behnken design of co-digestion	136
	4.11.5	Statistical analysis by ANOVA for co-digestion	136
	4.11.6	3D plots and optimisation for co-digestion	138
	4.11.7	Model validation for co-digestion	139
	4.11.8	Characteristics of different digesters during anaerobic	141
		digestion	
	4.11.9	Kinetic modelling of anaerobic co-digestion at	143
		optimised condition	
	4.11.10	Intermediate variation and end product characterisation	145

Chapter 5

Conclusions and Future Recommendations		146
5.1	Conclusions	146
5.2	Recommendations for future work	149
5.3	Limitations of biogas production	150
References		151
Appendix		174
List of Publications		176