List of Figures

Figure No	Figure Caption	Page No
Figure 1.1	Water distribution across the world	2
Figure 1.2	Classification of technologies available for pollutant removal	3
Figure 1.3	Membrane separation process classification based on their pore size	7
	and pressure.	
Figure 1.4	Number of publications from 2008-2018 on the membrane technology	8
	for wastewater treatment	
Figure 1.5	Current and proposed treatment method for removal of heavy metal	14
Figure 2.1	Schematic representation for green route synthesis of nanoparticles	23
Figure 2.2	Mechanism for photocatalytic degradation of pollutant	29
Figure 2.3	Different techniques for remediation of chromium contaminated water	42
Figure 2.4	Schematic representation of nanofiltration photocatalytic membrane	48
Figure 2.5	Experimental setup representation for As removal	49
Figure 2.6	Schematic representation of photocatalytic membrane reactor	51
Figure 3.1	Schematic representation of (a) particle and (b) membrane synthesis	88
Figure 3.2	(a) HRTEM image of TiO_2 NPs (b) SAED pattern of TiO_2 NPs	93
Figure 3.3	(a) XRD pattern (b) DLS spectra of synthesized TiO ₂ NPs (c) XRD	94
	pattern of TiO ₂ NPs , PVDF and PVDF/ TiO ₂ membrane	
Figure 3.4	(a) FTIR spectra and (b) Fraction value of α and $\beta\text{-phases}$ of pure	96
	PVDF and PVDF/TiO ₂ composite membranes	
Figure 3.5	(a) DRS spectrum (b) Band energy of $PVDF/TiO_2$ composite	97
	membranes	
Figure 3.6	Ternary Phase diagram of PVDF/NMP (a) no TiO_2 (b) 1 wt% TiO_2 (c)	98
	$2 \text{ wt\% TiO}_2 (d) 3 \text{ wt\% TiO}_2$	
Figure 3.7	(a) Relative concentration versus time	100
Figure 3.7	(b) Relative concentration versus $t^{0.5}$ for different composite	101
	membranes	

Figure 3.7	(c) Comparison of the thermodynamic and kinetic properties of the	103
	polymeric casting solution	
Figure 3.8	HRSEM images (a) no TiO ₂ (b) 1 wt% TiO ₂ (c) 2 wt% TiO ₂ (d) 3 wt% TiO ₂	104
Figure 3.9	Change in (a)Contact angle, (b) pore size,(c) porosity (d) tortuosity with TiO_2 loading	106
Figure 4.1	3D AFM image of different PVDF composite membranes.	123
Figure 4.2	Variation of interaction energy between membrane and BSA	127
Figure 4.3	Inhibition zone formation for different PVDF composites membrane	128
Figure 4.4	The OD_{600} value of the PM1 (control, no TiO ₂), PM2, PM3, and PM4 incubated for 24h.	129
Figure 4.5	HRSEM images of PVDF-TiO ₂ membranes before and after bacterial growth.	130
Figure 4.6	Antibacterial activity of different composite membranes	131
Figure 4.7	(a) Water flux value for different composite membranes before and	134
	after filtration of BSA bearing water (b) FRR and (c) % BSA rejection	
	for different PVDF/TiO ₂ composite membrane (d) Flux ratio during	
	filtration of HA solution.	
Figure 5.1	The dead-end filtration cell	148
Figure 5.2	Adsorption capacity of composite membrane at different TiO_2 loading	153
Figure 5.3	Pure water flux before and after BSA filtration	154
Figure 5.4	a) FRR of membranes b) Fouling resistance of membranes	155
Figure 5.5	Comparison of experimental and predicted filtration data and classic	157
	fouling models for membrane	
Figure 6.1	Schematic representation of setup for rejection of Cr(VI) using	167
	membrane and reduction of Cr(VI) using photocatalyst	
Figure 6.2	Schematic representation of the mechanism from Cr(VI) removal	173
Figure 6.3	UV spectra of Cr(VI) solution at different condition	174
Figure 6.4	Effect of NPs loading: (a) Variation of Flux, (b) % rejection & (c) %	176
	reduction with time	

Figure 6.5	Effect of particle size: (a) Variation of Flux, (b) % rejection and (c) $\%$	177
	reduction with time	
Figure 6.6	Effect of pH: Variation of (a) Flux, (b) % rejection and (c) % reduction	179
	with time	
Figure 6.7	Effect of [Cr(VI)]: (a)Variation of Flux, (b) %rejection and (c) %	180
	reduction with time	
Figure 6.8	Effect of transmembrane pressure: (a) Variation of flux, (b) %	181
	Rejection and % reduction with time	
Figure 6.9	Actual vs. Predicted plot of model a) % Rejection b) % Reduction	182
Figure 6.10	3D dimensional response surface and contour plots of % Rejection	185
	showing the effect of (a) Particle Loading and Cr concentration (b) pH	
	and Particle Loading; (c) pH and Cr concentration	
Figure 6.11	3D dimensional response surface and contour plots of % Reduction	187
	showing the effect of (a) Particle Loading and Cr concentration (b) pH	
	and Particle Loading; (c) pH and Cr concentration.	
Figure 6.12	(a)Reusability of PVDF/TiO ₂ membrane for Cr (VI) removal (b)	189
	Contact Angle value of the membrane after each run	
Figure 6.13	FTIR spectra of membrane at different operating condition	190
Figure 6.14	BET surface area of membrane before and after Cr removal	190
Figure 6.15	Graph of pH, TSS, COD, and Cr for wastewater before and after	192
	treatment for 3 different types of tannery industry	