	Page No.
Fig.1.1. A simple layout of a metal oxide semiconductor based sensor	4
Fig.1.2. A simple layout of a schottky barrier sensor	5
Fig.1.3. A simple layout of a MOSFET gas sensor	6
Fig.1.4. A simple layout of a surface acoustic wave sensor	7
Fig.1.5. Simple diagram of fiber optic sensor	7
Fig.1.6 The basic structure of zinc oxide	10
Fig.1.7. Reaction at the grain boundaries	13
Fig.1.8. Effect of grain size	15
Fig.1.9. Simple diagram (a) Compact layer and (b) Porous layer	16
Fig.1.10 A simple Sputtering setup	20
Fig.1.11. Photograph of aluminum sheet metal mask	22
Fig.1.12. Schematic diagram of the testing setup.	23
Fig.1.13. Photograph of the testing setup (In circle).	24
Fig.2.1. Photograph of fabricated undoped ZnO thin film sensor.	28

Fig.2.2. XRD pattern of undoped ZnO thin film.	28
Fig.2.3. SEM of undoped ZnO thin film (2.00 K X Magnification)	29
Fig.2.4. SEM of undoped ZnO thin film (5.00 K X Magnification)	30
Fig.2.5. EDX of undoped ZnO thin film.	30
Fig.2.6. 2D-AFM of undoped ZnO thin film	31
Fig.2.7. 3D-AFM of undoped ZnO thin film.	31
Fig.2.8. Photograph of fabricated $Zn_{0.92}Fe_{0.08}O$ thin film sensor.	33
Fig.2.9. XRD pattern of $Zn_{0.92}Fe_{0.08}O$ thin film.	33
Fig.2.10. SEM of nano-wrinkled Zn _{0.92} Fe _{0.08} O thin film (2.00 K X Magnification)	34
Fig.2.11. SEM of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film (5.00 K X Magnification)	35
Fig.2.12. FE-SEM of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film showing; large area view.	36
Fig.2.13. FE-SEM of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film showing; enlarged structure.	36
Fig.2.14. FE-SEM of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film showing; grown single wrinkled	e.37
Fig.2.15. FE-SEM of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film showing; wrinkle surface grain /grain boundary structure.	and 37
Fig.2.16. EDX of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film.	38
Fig.2.17. 2D-AFM of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film.	39
Fig.2.18. 3D-AFM of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film.	39
Fig.2.19. Photograph of fabricated $Zn_{0.92}Cu_{0.08}O$ thin film sensor.	40

Fig.2.20. XRD pattern of $Zn_{0.92}Cu_{0.08}O$ thin film.	41
Fig.2.21. SEM of Zn _{0.92} Cu _{0.08} O thin film (10.00 K X Magnification)	42
Fig.2.22. SEM of Zn _{0.92} Cu _{0.08} O thin film (20.00 K X Magnification)	42
Fig.2.23. EDX of $Zn_{0.92}Cu_{0.08}O$ thin film.	43
Fig.2.24. 2D-AFM of $Zn_{0.92}Cu_{0.08}O$ thin film.	44
Fig.2.25. 3D-AFM of $Zn_{0.92}Cu_{0.08}O$ thin film.	44
Fig.2.26. Photograph of fabricated $Zn_{0.92}Co_{0.08}O$ thin film sensor.	45
Fig.2.27. XRD pattern of $Zn_{0.92}Co_{0.08}O$ thin film.	46
Fig.2.28. SEM of Zn _{0.92} Co _{0.08} O thin film (10.00 K X Magnification)	47
Fig.2.29. SEM of Zn _{0.92} Co _{0.08} O thin film (30.00 K X Magnification)	47
Fig.2.30. EDX of $Zn_{0.92}Co_{0.08}O$ thin film.	48
Fig.2.31. 2D-AFM of $Zn_{0.92}Co_{0.08}O$ thin film.	48
Fig.2.32. 3D-AFM of Zn _{0.92} Co _{0.08} O thin film.	49
Fig.2.33. Photograph of fabricated $Zn_{0.92}Ni_{0.08}O$ thin film sensor.	50
Fig.2.34. XRD pattern of $Zn_{0.92}Ni_{0.08}O$ thin film.	51
Fig.2.35. SEM of Zn _{0.92} Ni _{0.08} O thin film (5.00 K X Magnification)	52
Fig.2.36. SEM of Zn _{0.92} Ni _{0.08} O thin film (30.00 K X Magnification)	52
Fig.2.37 . EDX of $Zn_{0.92}Ni_{0.08}O$ thin film.	53
Fig.2.38. 2D-AFM of Zn _{0.92} Ni _{0.08} O thin film.	54

Fig.2.39. 3D-AFM of Zn _{0.92} Ni _{0.08} O thin film.	54
Fig.2.40. Photograph of fabricated undoped ZnO nano-wired thin film sensor.	55
Fig.2.41. XRD pattern of undoped ZnO nano-wired thin film.	56
Fig.2.42. SEM of undoped ZnO nano-wired thin film (15.00 K X Magnification)	57
Fig.2.43. SEM of undoped ZnO nano-wired thin film (20.00 K X Magnification)	57
Fig.2.44. EDX of undoped ZnO nano-wired thin film.	58
Fig.2.45. 2D-AFM of undoped ZnO nano-wired thin film	59
Fig.2.46. 3D-AFM of undoped ZnO nano-wired thin film.	59
Fig.2.47. Photograph of fabricated $Zn_{0.92}Cu_{0.08}O$ nano-strip thin film sensor.	60
Fig.2.48. XRD pattern of $Zn_{0.92}Cu_{0.08}O$ nano-strip thin film.	61
Fig.2.49. SEM of Zn _{0.92} Cu _{0.08} O nano-strip thin film (10.00 K X Magnification)	62
Fig.2.50. SEM of Zn _{0.92} Cu _{0.08} O nano-strip thin film (20.00 K X Magnification)	62
Fig.2.51 (a , b , c). HR-SEM of nano-strip in Zn _{0.92} Cu _{0.08} O thin film at different magnific of nano-strip surfaces.	cation 63
Fig.2.52. EDX of $Zn_{0.92}Cu_{0.08}O$ nano-strip thin film.	64
Fig.2.53. 2D-AFM of $Zn_{0.92}Cu_{0.08}O$ nano-strip thin film.	64
Fig.2.54. 3D-AFM of $Zn_{0.92}Cu_{0.08}O$ nano-strip thin film.	65
Fig.2.55 . Photograph of fabricated $Zn_{0.92}Fe_{0.08}O$ nano-net thin film sensor.	66
Fig.2.56. XRD pattern of $Zn_{0.92}Fe_{0.08}O$ nano-net thin film.	67

Fig.2.57. SEM of Zn _{0.92} Fe _{0.08} O nano-net thin film (2.00 K X Magnification)	68
Fig.2.58. SEM of Zn _{0.92} Fe _{0.08} O nano-net thin film (5.00 K X Magnification)	68
Fig.2.59. EDX of $Zn_{0.92}Fe_{0.08}O$ nano-net thin film.	69
Fig.2.60. 2D-AFM of $Zn_{0.92}Fe_{0.08}O$ nano-net thin film.	70
Fig.2.61. 3D-AFM of $Zn_{0.92}Fe_{0.08}O$ nano-net thin film.	70

Fig.3.1. Sensor response of undoped ZnO thin film with methane as target gas at 200°C. 74

Fig.3.2. Response of the sensor on various concentrations and curve A, B, C, D, E, F as 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C respectively (Response versus Concentration).

Fig.3.3. Response for 100 ppm, 200 ppm, 300 ppm, 400 ppm concentrations at 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C temperatures (Response versus Temperature). 75

Fig.3.4. Show response time of undoped ZnO thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Response time versus Concentration). 76

Fig.3.5. Show response time of undoped ZnO thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Response time versus Temperatures). 77

Fig.3.6. Show recovery time of undoped ZnO thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Recovery time versus Concentration). 78

Fig.3.7. Show recovery time of undoped ZnO thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Recovery time versus Temperature). 78

Fig.4.1. Sensor response of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film with methane as target gas at 200 °C.

Fig.4.2. Response of the sensor on various concentrations and curve A, B, C, D, E, F as 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C respectively (Response versus Concentration).

83

Fig.4.3. Response for 100 ppm, 200 ppm, 300 ppm, 400 ppm concentrations at 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C temperatures (Response versus Temperature). 83

Fig.4.4. Show response time of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Response time versus Concentration).

Fig.4.5. Show response time of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Response time versus Temperatures).

Fig.4.6. Show recovery time of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Recovery time versus Concentration). 86

Fig.4.7. Show recovery time of nano-wrinkled $Zn_{0.92}Fe_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Recovery time versus Temperature).

Fig.4.8. Selectivity response of $Zn_{0.92}Fe_{0.08}O$ wrinkled based sensor for methane and hydrogen for 500 ppm at the operating temperatures range of 75 °C to 200 °C 88

Fig.5.1. Sensor response of $Zn_{0.92}Cu_{0.08}O$ thin film with methane as target gas at 200 °C. 90

Fig.5.2. Response of the sensor on various concentrations and curve A, B, C, D, E, F as 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C respectively (Response versus Concentration).

Fig.5.3. Response for 100 ppm, 200 ppm, 300 ppm, 400 ppm concentrations at 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C temperatures (Response versus Temperature). 91

Fig.5.4. Show response time of $Zn_{0.92}Cu_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Response time versus Concentration). 92

Fig.5.5. Show response time of $Zn_{0.92}Cu_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Response time versus Temperatures). 93

Fig.5.6. Show recovery time of $Zn_{0.92}Cu_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Recovery time versus Concentration). 94

Fig.5.7. Show recovery time of $Zn_{0.92}Cu_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Recovery time versus Temperature). 94

Fig.5.8. Selectivity response of $Zn_{0.92}Cu_{0.08}O$ thin film based sensor for methane and hydrogen for 500 ppm at the operating temperatures range of 75 °C to 200 °C. 95

Fig.6.1. Sensor response of $Zn_{0.92}Co_{0.08}O$ thin film with methane as target gas at 200 °C. 98

Fig.6.2. Response of the sensor on various concentrations and curve A, B, C, D, E, F as 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C respectively (Response versus Concentration).

Fig.6.3. Response for 100 ppm, 200 ppm, 300 ppm, 400 ppm concentrations at 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C temperatures (Response versus Temperature). 99

Fig.6.4. Show response time of $Zn_{0.92}Co_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Response time versus Concentration). 100

Fig.6.5. Show response time of $Zn_{0.92}Co_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Response time versus Temperatures). 101

Fig.6.6. Show recovery time of $Zn_{0.92}Co_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Recovery time versus Concentration). 102

Fig.6.7. Show recovery time of $Zn_{0.92}Co_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Recovery time versus Temperature). 102

Fig.7.1. Sensor response of $Zn_{0.92}Ni_{0.08}O$ thin film with methane as target gas at 200 °C. 106

Fig.7.2. Response of the sensor on various concentrations and curve A, B, C, D, E, F as 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C respectively (Response versus Concentration).

Fig.7.3. Response for 100 ppm, 200 ppm, 300 ppm, 400 ppm concentrations at 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C temperatures (Response versus Temperature).

Fig.7.4. Show response time of $Zn_{0.92}Ni_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Response time versus Concentration). 108

Fig.7.5. Show response time of $Zn_{0.92}Ni_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Response time versus Temperatures). 109

Fig.7.6. Show recovery time of $Zn_{0.92}Ni_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Recovery time versus Concentration). 110

Fig.7.7. Show recovery time of $Zn_{0.92}Ni_{0.08}O$ thin film methane sensor for 100 to 500 ppm at operating temperatures 75 °C to 200 °C (Recovery time versus Temperature). 110

Fig.8.1. Sensor response of undoped ZnO nano-wired thin film with methane as target gas at

250 °C.

114

Fig.8.2. Response of the sensor on various concentrations (100 to 500 ppm) and curve A, B, C, D as 100 °C, 150 °C, 200 °C, 250 °C respectively (Response versus Concentration). 115

Fig.8.3. Response for 100 ppm, 300 ppm, 500 ppm concentrations at 100 °C, 150 °C, 200 °C and 250 °C temperatures (Response versus Temperature).

Fig.8.4. Show response time for 100 to 500 ppm at operating temperatures 100 °C to 200 °C (A to D) (Response time versus Concentration).

Fig.8.5. Show response time for 100 to 500 ppm at operating temperatures 100 °C to 250 °C (Response time versus Temperatures). 117

Fig.8.6. Show recovery time for 100 to 500 ppm at operating temperatures 100 °C to 250 °C (A to D) (Recovery time versus Concentration).

Fig.8.7. Show recovery time for 100 to 500 ppm at operating temperatures 100°C to 250 °C (Recovery time versus Temperature).

Fig.8.8. Sensor response of $Zn_{0.92}Cu_{0.08}O$ nano-strip thin film based sensor with methane as target gas at 200 °C. 120

Fig.8.9. Response of the sensor on various concentrations (100 to 500 ppm) and curve A, B, C, as 100 °C, 150 °C, 200 °C respectively (Response versus Concentration).

Fig.8.10. Response for 100 ppm, 300 ppm, 500 ppm concentrations at 100 °C, 150 °C, 200°C temperatures (Response versus Temperature).121

Fig.8.11. Show response time for 100 to 500 ppm at operating temperatures 100 °C to 200 °C (A to C) (Response time versus Concentration).

Fig.8.12. Show response time for 100 to 500 ppm at operating temperatures 100 °C to 200 °C (Response time versus Temperatures). 123

Fig.8.13. Show recovery time for 100 to 500 ppm at operating temperatures 100 °C to 200 °C (Recovery time versus Concentration).

Fig.8.14. Show recovery time for 100 to 500 ppm at operating temperatures 100 °C to 200 °C (Recovery time versus Temperature). 124

Fig.8.15. Selectivity response of $Zn_{0.92}Cu_{0.08}O$ nano-strips thin film based sensor for methane and hydrogen for 500 ppm at the operating temperatures range of 100 °C to 200 °C. 125

Fig.8.16. Sensor response of $Zn_{0.92}Fe_{0.08}O$ nano-net thin film based sensor with methane as target gas at 200 °C. 126

Fig.8.17. Response of the sensor on various concentrations (100 to 500 ppm) and curve A, B, C, as 100 °C, 150 °C, 200 °C respectively (Response versus Concentration).

Fig.8.18. Response for 100 ppm, 300 ppm, 500 ppm concentrations at 100 °C, 150 °C, 200 °C temperatures (Response versus Temperature).

Fig.8.19. Show response time for 100 to 500 ppm at operating temperatures 100 °C to 200 °C (Response time versus Concentration).

Fig.8.20. Show response time for 100 to 500 ppm at operating temperatures 100 °C to 200 °C (Response time versus Temperatures). 129

Fig.8.21. Show recovery time for 100 to 500 ppm at operating temperatures 100 °C to 200 °C (Recovery time versus Concentration). 130

Fig.8.22. Show recovery time for 100 to 500 ppm at operating temperatures 100 °C to 200 °C (Recovery time versus Temperature). 130