2.1 Introduction

This chapter presents a brief overview of the existing literature that mainly confers the fundamental concepts of neck muscle fatigue analysis using electromyography (EMG) data. This section critically reviews the available neck muscle fatigue determining techniques, their comparison.

Previous research works highlight the study of different types of problems, such as neck pain, cervical radiculopathy, and spondylosis pain. The survey was done in the framework of different types of traction treatment for the reduction of neck pain. Moreover, a survey regarding the analysis and classification of EMG data from neck muscle is also described in this chapter.

2.2 Muscle Fatigue

Muscle fatigue is defined as a decrease in the performance of muscle strength and is caused by various physical, biochemical, nutritional, and environmental factors. It is broadly classified into three groups: (i) subjective fatigue, which is influenced by psychological factors such as lack of motivation, (ii) physical fatigue, which manifests itself by changes in physiological process, and (iii) objective fatigue, which shows a decline in productivity [Chaffin 1973]. In another approach, muscle fatigue is also classified as central and peripheral fatigue. Central fatigue originates from the central nervous system, which decreases the neural drive of the muscle, whereas peripheral fatigue affects the distal end of the muscle or at the neuromuscular junctions [Gandevia et al., 2001; Bigland-Ritchie et al., 1978].

2.2.1 Neck Pain

Neck pain is a common and disabling problem in the general population. The main causes of neck muscle pain are poor posture, anxiety, depression, muscle strain, and sporting activities [Vernon H et al., 2007; Peterson et al., 2002]. Neck pain is noticed in all sections of the population regardless of physical activity level [Hogg-Johnson et al., 2008; Cote et al., 2008]. Neck pain comes from many disorders and includes cervical facet syndrome, neck strain, degenerative disc disease [Jensen and Harms-Ringdahl, 2007], etc.

Neck muscle fatigue analysis is discussed here, including current challenges in this domain.

2.2.2 Methods of Neck Pain Reduction

There are various methods of neck pain reduction, as follows:

- Physical Therapy: Physical therapy methods are used to reduce neck pain and stiffness. The duration of the treatment plan can vary from person to person.
- Traction: Traction uses weights, pulleys, or an air bladder to stretch the patient's neck. This therapy, under the supervision of a medical profession and physical therapist, may provide relief in neck pain. It has become a standard practice of physiotherapists to refer to patients suffering from neck pain to undergo cervical traction therapy.
- Acupuncture: Acupuncture involves the insertion of thin needles into various points on the patient's body. Using needles, an experienced acupuncturist will target areas of pain to give complete pain relief without medications.

- Chiropractic care: Chiropractic care is a non-surgical treatment that reduces neck pain and stiffness. Practitioners use their hands to treat muscle, joint, and nerve pain by adjusting the spine and joints.
- Pain Management Methods: There are pain management methods that require drugs with heavy side effects or severe surgery [Neck pain -Diagnosis and treatment - Mayo Clinic, 2019].

Cervical Traction treatment is the most commonly prescribed therapy by doctors for the management of neck pain.

2.3 Cervical Traction

Traction is one of the oldest methods of therapy known and has been employed in a variety of forms to relieve pain and discomfort since ancient times [Hooper, 1996]. In cervical traction treatment, stretching of the spine is done to isolate the vertebrae to relax the neck muscles. It is used for the treatment of cervical spine injuries, including cervical herniated disc, radiculopathy, strain, and spondylosis. The traction machines comprise adjustable weights for applying strain to the neck at different intensities. The pulling time of traction on the level is decided based on neck pain. There are various approaches for applying cervical traction to the neck [Wong et al., 2017].

Manual cervical traction is done by a physical therapist. In mechanical traction, treatment is given by an instrument, and Gravitational Traction: Gravity provides the distraction force.

Figure 2.1 Cervical Traction

According to [Hooper, 1996], suggested that the therapist begins with a traction force of (4.5 kg to 7 kg) tension. It is the safe and effective application of traction to the cervical spine. [Saunders, 1983] use of spinal traction in the treatment of neck condition and found that weights of 8 kg to 20 kg were necessary to demonstrate a measurable change in the posterior cervical spine structures.

2.4 EMG (Electromyography)

Electromyography (EMG) refers to the collective electric activity from muscles, which is controlled by the nervous system and produced during muscle contraction. It is a non-invasive procedure used to amplify, display, and record electrical activity in the muscles [Merletti et al., 2009; Chowdhury et al., 2013].

EMG signal is produced by physiological variation in the state of muscle fiber membranes during voluntary and involuntary contractions. The surface EMG signal has amplitude ranging from 0 to 10 mV (peak to peak), and frequency range lies between 0 to 500Hz [Anjana Goen et al., 2013].

The extracted information from EMG data is useful in different fields, rehabilitation medicine, ergonomics, physiotherapy, sports medicine, neurophysiology, and kinesiology.

EMG data is also used for muscle fatigue analysis; the parameters usually used are amplitude and frequency of the signal. [De Luca, 1993; Thelen et al., 1994; Gottlieb and Agarwal, 1977; Valero-Cuevas et al., 2003]. The various features for muscle fatigue analysis are: mean absolute value, root mean square, standard deviation, and variance. These are commonly used features in time domain analysis [Phinyomark et al., 2009]. Time-domain features are frequently used as a muscle force detection tool. To analyze the frequency component of the EMG signal, the mean and median frequencies are the most important parameters [Thongpunja et al., 2013].

The wireless EMG sensor is used in a recording of EMG data. The distance is 40 meters is utilized to get the information from EMG sensors. [Dong H. et al., 2014].

A lot of research has been done for the assessment of neck pain, which is described below.

11

S.	Authors	Objectives	Conclusions
No.	(Years)		
1.	Deets et al. (1977)	This study compared the EMG data for sitting and supine positions during traction treatment.	The result indicated that the supine position was more useful in the treatment of the cervical spine with traction.
2.	DeLacer da (1980)	Determined the effect of varying angles of intermittent cervical traction of fixed force magnitude on the EMG activity of a selected muscle.	Statistical analysis revealed that a positive relationship existed between an increase in the angle of pull and muscle activity
3.	Jette et al. (1985)	Compared the muscle activity in the upper trapezius muscle before, during, or after supine cervical traction.	No significant differences in muscle activity were found at different time periods.
4.	Murphy et al. (1991)	Compared the EMG activity in both normal and pain subjects before, during, and after cervical traction treatment.	No significant difference between group (P>0.05) noted in EMG recordings at rest and within 10 minutes of traction. So the cervical traction does not produce muscular relaxation as measured with EMG equipment.
5.	Van der (1995)	Assessed the efficacy of traction for patients with neck or back pain.	Observed no traction modality for back or neck pain is effective, or more effective than other treatments. There are no clear indications; however, that traction is an effective therapy for back and neck pain.
6.	Wong et al. (1997)	The design of cervical traction modality with closed-loop traction weight control based on EMG biofeedback was developed.	No significant change of muscle activity in the paraspinal muscle at vertebral levels C1-2, C3-4, and C5-6.
7.	Krause et al. (2000)	This study reviewed which traction benefits and to provide guidelines for the clinical application of traction.	Found that traction has been shown to separate vertebrae, stretch the cervical joint capsules, stretch neck muscles, and open the foramina.

8. 9.	Korthals -de Bos et al. (2003) Graham	Evaluated the cost effectiveness of physiotherapy, manual therapy and care by a general practitioner for patients with neck pain. Analyzed the effect of mechanical traction for a neck	The result showed that the manual therapy is more effective and less costly for treating neck pain than physiotherapy or care by general practitioner. No statistically significant difference between continuous
	(2006)	disorder.	traction and placebo traction in reducing pain or improving function for a chronic neck disorder.
10.	Ylinen et al. (2007)	Compared the effects of manual therapy and strengthening exercise on neck pain and disability.	Both strengthening exercise and manual therapy considerably decreased both Neck pain and disability.
11.	Borman et al. (2008)	This study examined the efficacy of traction therapy in chronic neck pain.	No effect of traction over physiotherapeutic interventions was observed in adults with chronic neck pain.
12.	Fater et al. (2008)	Compared the magnitude of cervical vertebral separation during cervical traction in supine and seated positions using home traction units.	No significant changes in anterior vertebral separation during either supine or seated traction position.
13.	Chiu et al. (2011)	This study examined the efficacy of cervical traction in the treatment of neck pain over a 12 week followed up.	No significant difference in between the two groups in the neck pain questionnaire (P > 0.05), verbal numerical pain scale (P > 0.05) and cervical active range of motion (P > 0.05).

14.	Dawood et al. (2013)	The purpose of this study was to compare the effects of Kinesio taping and cervical traction posture pump on MND.	Observed that Kinesio taping cervical traction posture pump is equally effective in improving cervical curvature, pain intensity, and function neck disability in patients with mechanical neck disorders compared to exercise program alone, which was the least effective.
15.	Khosrav ani et al. (2013)	Evaluated the efficiency of applying a number of techniques which have been mostly used to detect muscle fatigue in isometric contraction and isotonic contraction.	The calculation of EMG features (RMS and median frequency; the situation which resulted in considerable differences in the quantities of the calculated values.
16.	Bid et al. (2014)	Determined the effectiveness of cervical traction in the management of mechanical neck pain.	The pre-test evaluation showed that there is no significant difference (P>0.05) between the two groups for all the variables measured. The post-test evaluation of both groups showed a significant difference within the groups. They conclude that conventional therapy is effective for pain reduction and neck disability.
17.	Bosmia et al. (2015)	Compared the effectiveness of manual mulligan traction (MT) with intermittent electric (IET) in the subject having cervical spondylosis.	This study showed significant improvement in range of motion (ROM) of the subjects treated with MT. However, the other parameters (NRS & NDS) did not show any significant changes. This paper concluded that Manual mulligan traction (MT) is more efficient than intermittent electric traction (IET) in cervical spondylosis.

18.	Hoseinp	Analyzed the three different	This paper indicated that
	– our et	methods (physiotherapy with	physiotherapy with traction is
	al.	cervical traction, acupuncture,	useful than needle therapy and
	(2015)	and strengthening exercise) for	strengthening exercise in
		three weeks.	patients with cervical disease.
			After some weeks, traction
			therapies were more effective in
			decreasing pain.
19.	Ali et al.	This study compared the	This paper indicated that cervical
	(2015)	manual therapy with cervical	mobilization is more effective
		traction in reducing cervical	than cervical traction, both in
		pain and disability.	terms of reducing pain and
			disability in subjects with non-
			specific neck pain.

2.4.1 Conclusion

This literature survey discusses the application of electromyography for analyzing neck pain occurring to patients. Also, the different modalities of traction therapy for neck pain treatment were drawn in this chapter. For most of the case studies, the effect of traction therapy was found insignificant in reducing the neck pain of subjects. A quantitative analysis of EMG data recorded for neck muscle required to achieve the positive impact of traction therapy for reducing neck pain.

2.5 Cervical Radiculopathy

Cervical radiculopathy is a clinical condition resulting from compression of the cervical nerve roots. The main symptoms of cervical radiculopathy are pain that spreads into the arm, neck, upper back, shoulders, numbness, tingling [Sharma et al., 2014].

S. No.	Authors (Years)	Objectives	Outcomes
1.	Moeti (2001)	This study analyzed the effectiveness of intermittent cervical traction treatment on fifteen patients with cervical radiculopathy and neck disability.	In this case, patients with radicular symptoms for 12 weeks and less demonstrated a reduction in pain and disability.
2.	Joghataei et al. (2004)	Determined the effects of cervical traction combined with conventional therapy on grip strength on patients with cervical radiculopathy.	Cervical traction combined with electrotherapy and exercise produced an immediate improvement in the hand grip function in patients with cervical radiculopathy.
3.	Cleland et al. (2005)	Investigated the effectiveness of manual physical therapy, cervical traction, and strengthening exercise in a homogeneous group of patients with cervical radiculopathy.	Described the patients with cervical radiculopathy treated with the multimodal treatment approach of manual physical therapy, the strengthening exercise, and cervical traction reduced pain and improved function at the time of discharge and a six month follows up.
4.	Cleland et al. (2007)	The purpose of this study was to Identify variables from the baseline examination or physical therapy intervention received could predict clinical outcomes for people with cervical radiculopathy.	The result suggested that a subset of predictor variables can accurately identify which people with cervical radiculopathy are likely to experience short term successful outcomes.
5.	Young et al. (2009)	This study was to examine the effects of manual therapy and exercise with or without the addition of cervical traction on pain and disability in patients with cervical radiculopathy	Observed mechanical cervical traction to a multimodal treatment program of manual therapy and exercise yields no significant additional benefit to pain, function, or disability in patients with cervical radiculopathy.

6.	Ragonese	Determined the treatment method	Significant differences in
	et al.	to produce superior outcomes for	treatment effects were
	(2009)	patients with cervical	observed for the reduction of
		radiculopathy: manual physical	pain, an increase in score on
		therapy, therapeutic exercise, or a	the NDI.
		combination of manual physical	
		therapy and therapeutic exercise.	
7	Elmaggan	This study compared the office of of	The regult showed that there
/.	Elliaggai	intermittent compared the efficacy of	The result showed that there
	(2000)	antipuous convict traction of pack	was a significant difference
	(2009)	continuous cervical traction of neck	between groups concerning
		pain and arm pain severity,	neck frontal and transverse
		amplitude, and latency of H reflex	mobility in favor of
		of flexor carpi radials muscle and	intermittent traction.
		neck mobility in patients with C6	
		and C7 radiculopathy.	
8.	Forbush	Described the management of 10	This study Concluded that
	et al.	patients with advanced cervical	intervention resulted in
	(2011)	spondylarthrosis with	substantial improvement in
		radiculopathy, using manual	numeric pain rating scale and
		therapy, intermittent traction and	neck disability index (NDI).
		home exercise.	
9.	Umar et	Compared the effectiveness of	This study concluded that the
	al. (2012)	traction with muscle-strengthening	core muscle strengthening
		exercise to traction alone in its	exercises an important part in
		management.	the treatment of Cervical
			radiculopathy when combined
			with cervical traction.
10	Ojoawo	Evaluated the efficacy of	It was concluded that cervical
	et al.	continuous cervical traction on	traction is effective in
	(2013)	radiating neck pain.	relieving radiating pain and its
			associated disability.
11	Rai et al.	Analyzed the effectiveness of	Found that exercises and
	(2013)	cervical traction. along with	intermittent cervical traction
	()	conventional therapy in the	is efficient in the treatment of
		management of cervical	cervical radiculopathy and
		radiculopathy.	must have a considerable
		radioutopathy.	position in the management of
			cervical radiculonathy

12.	Sharma and Patel (2014)	This study presented the effectiveness of TENS versus intermittent cervical traction among patients with cervical radiculopathy is sparse.	Found that TENS was more efficient in the management of cervical radiculopathy along with isometric neck exercise in reducing both neck and arm pain.
13.	Angela et al. (2015)	Evaluated the effectiveness of cervical traction, along with conventional therapy in the management of cervical radiculopathy.	The result of this study revealed that both groups a highly significant improvement in as measured by NPRS and decreasing neck disability and improving functional activities as measured by NDI.
14.	Bukhari et al. (2016)	Determined the effects of mechanical versus manual traction in manual physical therapy combined with segmental mobilization and exercise therapy in the physical therapy management of patients with cervical radiculopathy.	This study concluded that cervical radiculopathy treated with mechanical traction, segmental mobilization, and exercise therapy will manage pain and disability more effectively then treated with manual traction, segmental mobilization, and exercise therapy.
15.	Sarfaraj and Deepali (2018)	The purpose of this study was to find out the effects of manual and mechanical cervical traction with neural mobilization (ULTT-1) n cervical radiculopathy.	The outcome of this study showed that there is no significant difference between manual and mechanical traction with neural mobilization in decreasing pain and improving ROM in patients with cervical radiculopathy.

2.5.1 Conclusion

This literature review is to present a comprehensive summary of the management of cervical radiculopathy. The review of modalities used by the physiotherapist in the treatment of neck pain was presented there. The conclusion of this review shows the effectiveness of different types of treatment in relieving neck pain in the case of cervical radiculopathy patients. So there is a need to do quantitative analysis of neck muscle fatigue throughout cervical traction.

2.6 Cervical Spondylosis

Cervical spondylosis is a disorder of age-related wear affecting the discs and vertebrae of the cervical spine. Cervical spondylosis is also called cervical osteoarthritis. The common symptoms are neck stiffness, headache, dizziness, abnormal reflexes, muscle spasm [Wang C et al., 2016; Hafez, A. R., 2009].

The previous research work done regarding the analysis and treatment of cervical spondylosis is discussed as follows.

S.	Authors	Objectives	Outcomes
No.	(Years)		
1.	Martha	This study was to determine a	The results indicated a positive
	L.	correlation exist between	correlation between therapist body
	(1989)	therapist body weight and the	weight and traction force imparted
		amount of force when using a	to the cervical spine when using a
		manual traction technique.	manual traction technique.
2.	Nanno	Determined the effectiveness of	Indicated the cervical traction is
	M.	cervical traction on neck pain	effective in relieving pain,
	(1994)	and shoulder pain.	increasing the frequency of the
			myoelectric signal, and improving
			blood flow in affected muscles.

3.	Jordan	Compared the effectiveness of	In this study, Primary outcome
	et al.	intensive training of the cervical	measures included self-reported
	(1998)	musculature, a physiotherapy	pain, disability, medication use,
		treatment, and chiropractic	perceived effect, and physician's
		treatment on this patient group.	global assessment. Secondary
			outcome measures included an
			active range of motion of the
			cervical spine as well as strength
			and endurance measurements of
			the cervical musculature. These
			groups showed significant
			improvement regarding self-
			reported pain and disability on
			completion of the study.
4.	Banato	Proposed a technique for	A comparison of the instantaneous
	et al.	calculating spectral parameters	mean and median frequency
	(2001)	from the surface myoelectric	parameters was reported for the
		signal during cyclic dynamic	assessment of localized muscle
		contractions.	fatigue during dynamic
			contractions.
5.	Hoving	Determined the effectiveness of	This paper concluded that manual
	et al.	manual therapy, physical	therapy is a favorable treatment
	(2002)	therapy, and continued care by	for neck pain patients compared
		a specialist.	with physical therapy and
			continued care by a practitioner.
6.	Atteya,	This study was to investigate	This paper reported the different
	(2004)	the effect of cervical traction	phases of cervical traction showed
		modality with and without	a significant decrease in EMG
		electromyography biofeedback	activity during the pull period of
		for neck muscles in patients	traction and after traction.
		with cervical radiculopathy.	
7	Doddy of	The objective of this study was	This paper outcome shows that
/.	al	to analyze whether neck muscle	improving the functional canacity
	(2012)	fatigue exercise alerts	of these muscles play an essential
	(2012)	proprioception and	part in maintaining cervical
		neuro- muscular control of the	position sense
		cervical spine	Position bense.
1		corviour spino.	

8.	Akinbo	Investigated the cardiovascular	The effectiveness of the two
	et al.	responses and side effects	traction positions in terms of pain
	(2013)	during cervical traction in	relief and enhance neck mobility
		sitting and supine positions and	in the subject studied. But the
		also to compare the effects of	supine position recorded a higher
		both positions on pain and neck	mean difference.
		mobility in spondylosis	
		patients.	
9.	Julie M.	Examined the efficacy of	The primary analysis examines
	et al.	cervical traction, in addition, to	2-way treatments by time
	(2014)	exercise for a specific subgroup	interactions. Secondary analyses
		of patients with neck pain.	examined the validity of the
			subgrouping rule by-adding
			3-way interactions. This paper
			outcome that mechanical traction
			to exercise for patients with
			cervical radiculopathy resulted in
			lower disability and pain.
10.	Shah et	Determined the effects of spinal	Observed that spinal mobilization
	al.	mobilization with and without	combined with manual traction is
	(2015)	manual traction on pain and	more effective than spinal
		disability in patients with	mobilization alone for the
		cervical radiculopathy.	management of radicular pain and
			disability in patients with cervical
			radiculopathy.
11.	Choi,	Studied the changes in the	The result showed that the
	J.H et al.	activity and fatigue of the	comparison of muscle fatigue
	(2016)	splenius capitis and upper	among the posture showed a
		trapezius muscle, the muscles	statistically significant difference
		that support the head, under the	for the right trapezius capitis, left
		three postures adopted most	splenius capitis, and left upper
		frequently while using a	trapezius.
		smartphone.	
12.	Qayyum	Compared the mechanical	The results showed that the p-
	et al.	traction and manual therapy for	value for NPRS using mechanical
	(2017)	relieving pain in patients of	traction was 0.027, which is less
		cervical spondylosis C5-C6.	than the level of significance 0.05.

13.	Wong et	Described the development of a The result indicated t	that the
	al.	cervical traction therapy inclined position may b	be more
	(2017)	simulation model that evaluates effective in in	ncreasing
		two types of traction position, intervertebral separations	than the
		namely the sitting position and sitting position.	
		inclined position.	

2.6.1 Conclusion

This section has highlighted some aspects of cervical spondylosis pain. The review was done in the different types of traction used by the physiotherapist for reducing neck pain. The effects of traction therapy have also been highlighted for the treatment of cervical spondylosis pain.

2.7 Classification

Classification is a supervised learning approach in which the computer program learns from the data input given to it and then uses this learning to classify new observations [Scott et al., 1988].

S.	Authors	Objectives	Outcomes
No.	(Years)		
1.	Kamarud	Analyzed the detection,	In this work, several indices in
	din et al.	processing, and classification	time, frequency, and time-
	(2005)	of surface EMG signals for the	frequency representations have
		assessment of muscle fatigue	been identified for the
			assessment of muscle fatigue.
2.	Subasi et	The aim of this study was to	In this study, Time-frequency
	al. (2010)	detect fatigue of biceps brachia	methods have been used as a
		muscle using time frequency	feature extraction method and,
		methods and independent	ICA has been used to reduce the
		component analysis (ICA).	dimension of feature vectors.
			Then extracted features of EMG
			signals have been used as an
			input to MLPNN that could be
			used to detect fatigue.

3.	Xiadong Xu et al. (2014)	Presented an improved incremental training algorithm based on an online support vector machine (SVM). The wavelet transform feature was used to study the changes in EMG when muscle fatigue occurs.	Analyzed the muscle fatigue in EMG and proposed an improved incremental online training algorithm that can be applied to an EMG based HMI system.
4.	Ozmen et al. (2017)	The study compared the classification performance of cervical disc herniation patients with healthy persons by using EMG features.	The result of this study, the Autoregressive method (AR) method, provided the best classification accuracy for the trapezius muscle, and (Discrete wavelet transform) DWT gave the best classification accuracy for the Stermocleidomastois (SCM) muscle.
5.	Karthick et al. (2018)	This study compared the time– frequency features using classifier performance.	The proposed time-frequency distributions are able to show the nonstationary variations of the EMG signal. Most of the features statistically significant differences in muscle fatigue and non-fatigue conditions.
6.	Sharawar di et al. (2018)	Implemented the LS-SVM classification technique for the analysis of muscle fatigue using the single-channel EMG data and compared the accuracies with the KNN and ANN algorithms.	This paper indicated the better accuracy of the SVM technique than the KNN and ANN.

2.8 Conclusion

The various methods and their significance for determining neck muscle fatigue were discussed in the whole survey. The problems such as neck pain with radiculopathy, neck pain without radiculopathy, and spondylosis pain were also described in this section. The review was done based on the modalities used by physiotherapists in the treatment of neck pain.

The various techniques implemented by researches for the classification of EMG data were demonstrated to identify neck muscle fatigue. Moreover, the positive, as well as negative aspects of traction therapy for reduction of neck pain were also established in this section. Based on these conclusions, work regarding the assessment of neck pain has been proposed in the subsequent chapters.