TABLE OF CONTENTS

Contents	Page No.
List of Figures	i-ix
List of Tables	x-xi
List of Abbreviations and Symbols	xii-xiv
Preface	xv-xvi
Chapter 1	
ntroduction and Objectives	1-7
.1 Background	1
.2 Polyphenols	2

1.3 Diabetes mellitus (DM)2	
1.4 Relation of oxidative stress with diabetes mellitus3	
1.5 Exploring potential of natural products4	
1.6 General strategies for antidiabetic activity5	
1.7 Motivation and significance of research work6	

1.8 Objectives

Chapter 2

Literature Review	8-23
2.1 Strategies for polyphenols extraction, isolation, and purification	8
2.1.2 Effect of solvents and different parameters on polyphenols extraction	8
2.1.3 Types of polyphenols extraction	10
2.1.4 Purification of polyphenols	10
2.1.5 Mass spectrometry for chemical compounds identification	11
2.1.6. NMR spectroscopy for structural identification of natural product	11

2.1.7. Separation and quantification of polyphenols	12
2.2 Polyphenols and it classification	13
2.2.1 Phenolic Acids	15
2.2.2 Flavonoids and its characteristic features	15
2.2.3 Stilbenes	15
2.2.4 Lignans	16
2.3 Polyphenols and its therapeutic values	16
2.3.1 Antioxidant potential of polyphenols	16
2.3.2 Polyphenols against free-radical-mediated damage to DNA	17
2.3.3 Protective role of polyphenols and its molecular mechanism	17
2.3.4 Inhibition of α -amylase by dietary polyphenols	19
2.3.5 Inhibition of α -glucosidase and lipase by polyphenols	19
2.3.6 Inhibition of xanthine oxidase by polyphenols	20
2.3.7 Protective role of polyphenols against diabetes mellitus in relation	
to phenolics content, antioxidant and oxidative stress	21
2.3.8 Chemopreventive effect, regulation of cell proliferation and	
apoptosis by polyphenols	22
2.3.9 Effects of polyphenols on oxidative stress	23
2.3.10 Effect of polyphenols on modulation of protein glycation and	23
formation of advanced glycation end-products	
Chapter 3	24-40
Extraction, Purification, and Characterization of polyphenols from faba	
beans	24
3.1 Introduction	24

3.1 Introduction

3.2 Experimental	3.2	Experimental
------------------	-----	--------------

3.2.1 Chemicals and reagents	25
3.2.2 Seed material	
3.2.3 Preparation of seed extract	25
3.2.4 Phytochemical screening	25
3.2.5 Thin layer chromatography	25
3.2.6 Fourier transform infrared spectroscopy (FTIR)	25
3.2.7 Chemo-profiling of phenolics compounds by RP-HPLC-ESI-Q-TOF-M	26
3.2.8 Column chromatography	27
3.2.9. HPLC study condition	27
3.2.10. Mass spectrometry	28
3.3. Results and Discussion	28
3.3.1 Preliminary phytochemical screening of Vicia faba crude seed	29
extract	29
3.3.2 Investigation of phenolic compounds by thin layer chromatography	29
3.3.3 FTIR analysis of faba bean seed extract	30
3.3.4 Identification and characterization of polyphenols by RP-HPLC-ESI-	31
Q-TOF-MS	32
3.3.5 HPLC analysis of acetone seed extract after column chromatography	
3.3.6 Mass Spectrometry	
3.4 Conclusion	36
Chapter 4	37
<i>In vitro and silico</i> interaction of porcine α-amylase with polyphenols from	

faba bean and evaluation of antidiabetic activity 41-57

4.1 Introduction	41
4.2 Experimental	41
4.2.1 Seed material	42
4.2.2 Chemicals and reagents	42
4.2.3 α -amylase inhibitory assay	42
4.2.4 Mode of α -amylase inhibition	42
4.2.5 Statistical data analysis	43
4.2.6 <i>In-silico</i> analysis	43
4.2.6.1 Preparation of protein and selection of ligands	43
4.2.6.2 Ligand preparation	44
4.2.6.3 Docking of ligand-receptor procedure	44
4.2.6.4 Molecular dynamic simulation analysis	45
4.3 Results and Discussion	45
4.3.1 Inhibitory potency of Vicia faba seed extracts against α -amylase	45
activity	46
4.3.2 Mode of enzyme inhibition and their kinetic analysis	48
4.3.3 Molecular docking studies	51
4.3.5 Root mean square deviation	52
4.3.6 Cluster analysis	53
4.3.7 Effect of catechin on α -amylase	56

4.4. Conclusion

Chapter 5

In vitro and in silico studies of polyphenol compounds from faba beans as	58-7.	3
---	-------	---

α-glucosidase inhibitors	59
5.1 Introduction	59
5.2 Experimental	60
5.2.1 Seed materials	60
5.2.2 Chemicals	60
5.2.3 α -glucosidase inhibitory activity	60
5.2.4 Mode of enzyme inhibitory potential assay	60
5.2.3 In silico studies of polyphenols with α –glucosidase	60
5.2.3.1 Ligands selection and preparation of protein	61
5.2.3.2 Ligand preparation	61
5.2.3.3 Molecular docking	62
5.2.3.4 Molecular dynamic simulation and trajectories analysis	63
5.3. Results and Discussion	63
5.3.1 Effect of seed extract on α -glucosidase activity	65
5.3.2 Molecular docking studies	67
5.3.3 Monitoring trajectories	67
5.3.4 Root mean square deviation	69
5.3.5 Effect of catechin on α -glucosidase	69
5.3.6 Effect of gallic acid on α -Glucosidase	72
5.4 Conclusion	
Chapter 6	74-92
In vitro and in silico interaction of faba bean (Vicia faba L.) seed extract	

with xanthine oxidase and evaluation of antioxidant activity	74
6.1 Introduction	75
6.2. Experimental	75

6.2.1 Seed material and their characterization	75
6.2.1 Chemicals	75
6.2.3 Total phenolics content	75
6.2.4 Determination of total flavonoid content	76
6.2.5. In vitro antioxidant activity	76
6.2.5.1 DPPH scavenging assay	76
6.2.6 In vitro xanthine oxidase inhibitory activity	76
6.2.7 Statistical analysis	76
6.2.8 In silico studies	76
6.2.8.1 Preparation of protein	76
6.2.8.2 Selection of ligands	76
6.2.8.3 Molecular drug-likeness properties predictions	79
6.2.8.4 Ligand preparation	79
6.2.8.5 Molecular docking	79
6.2.8.6 Molecular dynamics simulation	80
6.2.8.6.1 Simulation details	80
6.2.8.6.2 System Building	80
6.2.8.6.3 Trajectory analysis	81
6.3 Results and Discussion	81
6.3.1 Total phenolic content	82
6.3.2 Total flavonoid content	82
6.3.3 DPPH scavenging assay	84
6.3.4 Reducing power	84
6.3.5 In vitro xanthine oxidase inhibitory activity	85
6.3.6 Molecular docking studies	88

6.3.7 Molecular Dynamics Simulation	88
6.3.7.1 Root Mean Square Deviation	89
6.3.7.2 Cluster Analysis	91
6.4 Conclusion	
Chapter 7	93-117
Glucose uptake and oxidative stress studies of polyphenols from faba	
beans in Saccharomyces cerevisiae 2376	93
7.1 Introduction	93
7.2 Experimental	94
7.2.1 Seed materials	94
7.2.2 Chemicals	94
7.2.3 Culture collection and maintenance	95
7.2.4 Estimation of glucose uptake study in yeast cell	95
7.2.5 Determination of glucose adsorption capacity	96
7.2.6 FRAP (Ferric Reducing Antioxidant Power) assay.	96
7.2.7 Oxidative stress study condition	96
7.2.8 Cell survival study by MTT and SRB assay	97
7.2.9 Oxidative stress analysis by different approaches	97
7.2.9.1 ROS measurement by DCF-DA (2',7'-dichlorofluorescein diacetate)	
assay	97
7.2.9.2 DNA fragmentation assay	98
7.2.9.3 Atomic force microscopy	98
7.2.9.4 Propidium iodide staining	98
7.2.9.5 DAPI Staining	99
7.2.9.6 Oxidative stress study via flow cytometry approach	99

7.2.10 Glucose uptake assay through different approaches	99
7.2.10.1 Glucose uptake assay by flow cytometry	100
7.2.10.2 Estimation of glucose uptake study in yeast cells by confocal	
microscopy	100
7.2.11 Statistical analysis	101
7.3 Results and Discussion	101
7.3.1 Evaluation of Binding Capacity of Glucose with Seed Extract	101
7.3.2 Effect of seed extract on glucose uptake in yeast cells	102
7.3.3 Effect of seed extract and hydrogen peroxide on yeast cell survival rate	104
7.3.4 Estimation of antioxidant by ferric reducing antioxidant power (FRAP)	
assay	105
7.3.5 Oxidative stress analysis by different techniques	105
7.3.5.1 Cell Roughness study in yeast cell due to oxidative stress	107
7.3.5.2 Effect of seed extract on ROS measurement in yeast cells	107
7.3.5.3 Detection of DNA Fragmentation due to Oxidative Stress	109
7.3.5.4 Qualitative and quantitative analysis of yeast cells like apoptotic	
nuclei, apoptotic cell population by confocal microscopy	116
7.4 Conclusion	

Chapter 8

Glucose uptake and oxidative stress studies of polyphenols	from faba	118-138
beans on 3T3-L1 cell line		
8.1 Introduction		
8.2 Experimental		118
0.2 Experimental		119
8.2.1 Seed Material		119

8.2.2 Chemicals and reagents	119
8.2.3 Cell culture and differential assay	119
8.2.4 Oil Red O staining	
8.2.5 MTT assay	120
8.2.6 Oxidative stress study through different approaches	120
8.2.6.1 ROS Evaluation by DCF-DA (2',7'-dichlorofluorescein diacetate)	120
Assay	120
8.2.6.2 Oxidative stress study via flow cytometry approach	
8.2.6.3. DAPI staining	121
8.2.6.4 Propidium iodide staining	121
8.2.6.5 Atomic force microscopy	121
8.2.6.6 Oxidative stress through scanning electron microscopy	122
8.2.7 Glucose uptake study in 3 T3-L1 cell line	122
8.2.7.1 Estimation of glucose uptake study in 3T3-L1 cells by confocal	123
microscopy	123
8.2.7.2 Glucose uptake assay by flow cytometry	123
8.3. Results and Discussion	124
8.3.1. Cell differentiation study	124
8.3.2 Cell viability study	
8.3.3 Oxidative stress analysis through different techniques.	
8.3.3.1 Investigation of oxidative stress study by flow cytometry approach	125
8.3.3.2. Evaluation of ROS measurement in 3T3-L1 cells by confocal	125
microscopy	120

8.3.3.3 Qualitative and quantitative analysis of 3T3-L1 Cells like apoptotic	125
nuclei, apoptotic cell population by confocal microscopy	126
8.3.3.4. Roughness study in 3T3-L1 cell population due to oxidative stress	
8.3.3.5 Oxidative stress analysis by SEM	127
8.3.4 Evaluation of glucose uptake study in 3T3-L1 cell by confocal	133
microscopy and flow cytometry	134
8.4 Conclusion	137
Chapter 9	
Summary and Conclusions	
	138-142
References	
List of Publications	