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Chapter 5 

Assessment of Results 

5.1. Preamble 

This phase in the write-up comprises two significant case studies. One is a 

specific finding from work during the proposal of the algorithms. It is the 

evaluation among the two frequently used discrete transformation techniques 

based on their implication to order reduction of discrete-time interval systems. 

Other is a summary of the discussions remarked throughout the Chapter 3 and 

4 while proposing new algorithms for discrete-time interval systems. It also 

elaborates the limitations, if any, discovered during the discourse. 

5.2. Case 1: Appraisal of Discrete- Transformation Techniques 

This section conveys a significant finding through the work of algorithm 

development. In the literature survey for order reduction of discrete-time non-

interval/interval system, two discrete transformation techniques are frequently 

accessed. They play a substantial role in the advancement of an algorithm from 

continuous-time domain to the discrete-time domain. In literature, both are 

approached widely but do not present their importance in the arena of order 

reduction. This lead to the current work for appraisal between them giving a 

significant finding based on order reduction of discrete-time interval systems. 

Two widely used transformation techniques are notably 

a) Tustin or bilinear or trapezoidal method [112]–[117] and  

b) Euler’s Forward differentiation method [87], [118]–[120]. 

This work does not provide any new outcome but attempts to offer a 

justification, in a manner to directly aim which of the two transformation 

techniques is better to opt. 

5.2.1. Introduction 

Conversion from discrete-time to the continuous-time domain is essential in 

a manner to apply the continuous-time algorithms to discrete-time systems. As 

stated in the introduction, there are many transformation techniques but here 

only two of them, namely, Tustin and Forward difference transformation 

techniques are considered. The reason is their broad applicability towards the 
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order reduction of discrete-time systems stating the leading cause for the 

discussion that establishes their grandness, indicating a significant difference 

among each other. 

Chapter 2, section 2.8., submits the two techniques exclusively with a brief 

elaboration of their advantages and disadvantages. According to the second 

disadvantage, most of the traditional reduction techniques either in the frequency 

domain or in the time domain do not secure a proper fitting in their respective 

field. Thus, a reduced model may be satisfactory in one domain, but 

unsatisfactory in another domain. This disadvantage is attempted here to assess 

between the two transformations techniques for their broad implication through 

order reduction.  

Till date, to the authors’ knowledge, no discussion is available that specifies, 

which of the either transformation is more accurate or preferable for obtaining 

reduced order models. The unavailability set the motive to attempt for a 

convincing difference between the two conversion methods based on their 

simplicity and ease of computation via order reduction of discrete-time interval 

systems. Moreover, this appraisal of the frequently used conversion techniques 

would be helpful for the researchers who work on a higher order system for 

improvement of the system performance. 

5.2.2. Order Reduction 

This section present the evaluation among the two frequently used discrete 

transformation techniques as stated in the introduction. It is divided in two 

subsections a) Reduction methodology applied for the approximation and b) 

examples to understand the discovery from the work. The performance analysis 

is achieved on the basis of error computation and step response. 

5.2.2.1. Reduction Methodology 

Any of the acknowledged or proposed reduction algorithms can be chosen for 

deriving the reduced models. Here conceived is Gamma-Delta approximation, 

which is among the proposed algorithm in this thesis and its procedural steps 

are elaborated in Chapter 3 under section 3.2. Both the conversion techniques 

pose all the similarities except for 
1

1

w
z

w
 in w-domain and 1z p  in p-

domain and their respective inversions. Individually both the transformations are 

considered as: 
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a) Tustin or Bilinear transformation (w-domain): This conversion on (2.13) 

results the higher order interval system as (2.15) 

b) Euler Forward Difference or Linear transformation (p-domain):  This 

conversion on (2.13) consequences (2.16) as the higher order system. 

Execution of the techniques is performed as illustrated in section 3.2. This 

mathematical computation in both the domains is presented below in example 

subsection. Figure 5.1 depict the algorithmic procedure for the assessment.  

 

 

 

 

Figure 5.1: Algorithmic procedure for the assessment 

5.2.2.2. Example 

E.5.2.2.2.1. Consider the third order interval transfer function as  

2

3 3 2

3.25,3.35 3.5,3.65 2.8,3

5.4,5.5 1,1.1 1.5,1.6 2.1,2.15

z z
H z

z z z
       (5.1) 

a) The Tustin transformation leads to 

 

3 2

3 3 2

2.85, 2.4 1.3,2.35 9.05, 8.9 9.55,10

3.65,4 19.8,20.45 9.15,9.8 10,10.35

w w w
H w

w w w
   (5.2) 

's  and 's parameters obtained from the above denominator and numerator 

polynomials are 

1 1, 1.02,1.13
 2 2, 0.51,0.69

 

   1 1, 0.97,1.09
 2 2, 0.63, 0.49  

b) The forward difference transforms (5.1) to (5.3) and the respective 's  and 's

parameters obtained are  

2

3 3 2

3.25,3.35 10,10.35 9.55,10

5.4,5.5 17.2,17.6 19.7,20.3 10,10.35

p p
H p

p p p
     (5.3) 

1 1, 0.49,0.53
 2 2, 1.12,1.18

 

1 1, 0.47,0.51
 2 2, 0.57,0.60  

Substituting the above obtained parameters in (3.10), result in the simplified 

z-domain model with varied transformations as  

Gamma-Delta  kR z

nH w

nH p

kR w

kR p
1p z1z p

1

1

w
z

w

1

1

z
w

z

nH z
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2

2 2

0.137,0.244 0.85,1.107 0.995,1.376

2.032,2.464 0.958, 0.447 0.834,1.266
w

z z
R z

z z
     (5.4) 

2 2

0.568,0.601 0.475, 0.402

0.881, 0.820 0.550,0.619
p

z
R z

z z
     

(5.5) 

Assessment about the finding is performed in the next sub-section. 

E.5.2.2.2.2. Consider an eighth order interval system from real-time world as  

7
8

8

N z
H z

D z
              (5.6)

 

where  

7 6 5
7

4 3 2

1.6484,1.7156 1.0937,1.1383 0.2142, 0.2058

           0.1490,0.1550 0.5263, 0.5057 0.2672, 0.2568

           0.0431,0.0449 0.0061, 0.0059

N z z z z

z z z

z

   

(5.7) 

8 7 6
8

5 4 3

2

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

           0.2058,0.2142 0.1550, 0.1490 0.5057,0.5263

           0.2568,0.2672 0.0449, 0.0431 0.0059,0.0061

D z z z z

z z z

z z

          (5.8) 

Upon respective transformation, the parameters are obtained as

 w-domain p-domain 

1 1,  0.1190,0.1313  0.1189,0.1314  

2 2,  0.3257,0.4184  0.3335,0.4317  

1 1,  0.0107,0.0121  0.0107,0.0121  

2 2,  0.0297,0.0380  0.0302,0.0394  

 

Above computed parameters, result the reduced order models in z-domain as  

2

2 2

0.0332,0.0400 0.0070,0.0102 0.0345, 0.0246

1.3645,1.4733 1.9224, 1.8902 0.6204,0.7292
w

z z
R z

z z
     (5.9) 

2 2

0.0302,0.0394 0.0358, 0.0250

1.6665, 1.5683 0.6080,0.7232
p

z
R z

z z
         (5.10) 

Finding from this example is discussed in the next sub-section. 
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5.2.3. Evaluation and Discussion 

A brief discussion of the varied transformation techniques based on their 

analysis through the computation of errors and step responses between the 

higher-order systems and reduced lower order models is submitted here. 

Tables 5.1 and 5.2 show the errors for E.5.2.2.2.1 and E.5.2.2.2.2 respectively. 

Table 5.1: Error of 2nd order reduced models for E.5.2.2.2.1 

Transformation 
Error 

Lower Limit Upper Limit 

w-domain 0.0845 0.0116 

p-domain 0.0011 6.5463x10-05 

Table 5.2: Error of 2nd order reduced models for E.5.2.2.2.2 

Transformation 
Error 

Lower Limit Upper Limit 

w-domain 6.2265x10-04 7.3850x10-04 

p-domain 9.4157x10-04 9.4137x10-04 

 

The step responses of the reduced models and higher systems for E.5.2.2.2.1 

are shown in Figures 5.2 and 5.3 for lower and upper limit transfer functions 

respectively. Later Figures 5.4 and 5.5 depict the step responses for the two limit 

transfer function for E.5.2.2.2.2 correspondingly. 

The errors in Tables 5.1 and 5.2 are minimal as per the requirement of the 

error computation. Also the Figures 5.2-5.5 present an appreciable tracking of 

the step response of the higher order systems and the reduced models for both 

the examples via two transformations.  

Thus, the above results and thorough observations of the methodologies, 

evoke that p-domain discretization technique is quite simple and easy to 

transform, making it preferable over the w-domain techniques to produce similar 

reduced models.  

A feasible query developed on the basis of this assessment; is it relevant to 

compare the performance based on the model reduction as the result may depend 

on the reduction techniques as well as the numerical examples. The answer is; 

yes, they are a major factor to be considered but on a large scale of simplification, 

the linear transformation (p-domain) can be applied directly to obtain an 

acceptable result. 
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Figure 5.2: Step responses for reduced models (Lower Limit) for E.5.2.2.2.1 

 

Figure 5.3: Step responses for reduced models (Upper Limit) for E.5.2.2.2.1 
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Figure 5.4: Step responses for reduced models (Lower Limit) for E.5.2.2.2.2 

 

Figure 5.5: Step responses for reduced models (Upper Limit) for E.5.2.2.2.2 
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5.2.4. Conclusions 

An assessment of the two discretization techniques owing their own 

advantages and disadvantages is outlined here. The main goal to examine which 

of them supplies more convenient discretization with ease is recognized here. It 

is found in general that, forward difference achieves the advantage for being easy 

and simple at every step. The main reason is its linear form i.e. 1z p  instead 

of rational form as
1

1

w
z

w
. These observations indicate that any of the two 

techniques can be used; as both of them result in almost equivalent reduced 

forms; but for convince and ease of computation, p-domain emerge to be superior. 

The achieved results are good basis for further work in the area of discrete-time 

to continuous-time transformation and vice versa. Overall, the conclusion is that 

the latter technique is much simpler, matches as many moments as the former 

one does and hence appears to be better to the former technique. Moreover, the 

assessment seeks to be helpful to the researchers or control engineers or 

designers who work on higher order system in the discrete-time domain arena. 

5.3 Case 2: Analysis of Accumulated Algorithms  

This section exhibits the summary of the discussion and conclusions 

remarked throughout the Chapter 3 and 4, while proposing new algorithms for 

discrete-time interval systems. The limitations, if any, discovered during the 

course is also mentioned. 

5.3.1. Introduction 

A cumulative of 15 algorithms is reported in the thesis under two 

nomenclatures namely Routh Approximation approach and Assorted approach. 

Precisely, the proposed techniques in the thesis are classified as; 

I. Routh Approximation approach  

01) Gamma Delta Approximation 

02) Arithmetic Operator or Multiplicative Approach 

03) Novel Arrangement of Routh Array 

04) Simplified Interval Structure 

05) Advanced Routh Approximation Method (A-RAM) 

06) Extended Direct Routh Approximation Method (E-DRAM) 

07) Routh Approximant algorithm 

08) Routh Approximation and Pade Approximations 
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09) Direct Truncation and Routh Approximation 

10) Pade Approximation and Routh Approximation 

II. Assorted approach  

11) Non-computational Technique or Shifting Algorithm 

12) Classical Differentiation Method 

13) Direct Truncation Method 

14) Routh Approximation and Mikhailov Stability Criterion 

15) Direct Truncation and Mikhailov Stability Criterion  

5.3.2. Routh Approximation Approach 

Techniques demonstrated here are stated to be novel for their existences and 

procedural steps ground on Routh Approximation.  

Algorithm 1 presents a remarkable extension to discrete-time interval 

systems that satisfies the conditions for model stability, step response and 

minimum error computation.  

Contributing to the prevailing techniques, Algorithm 2 formulates a novel 

algorithm based on RA that retains the dynamic characteristic of the higher order 

system to its lower equivalent, i.e. stability. The novelty of the algorithm is in two 

folds; a) implication of multiplicative operator and b) finding the best possible 

arrangement from the varied combinations (mentioned as cases) of Routh table 

for deriving the numerator and denominator polynomials coefficients of the 

reduced model.  

Algorithm 3 presents a novel arrangement of Routh Table array for deriving 

an approximate model of a higher order discrete-domain interval system. The 

foresaid new arrangement is accomplished from the arena of varied combinations 

of numerator and denominator polynomials (mentioned as cases) practiced over 

the prevailing numerical example from the literature.  

In the course of attaining the retention of model stability; a limitation is 

discovered, which is ignored for the algorithm’s proficiency. Limitation is the 

computation of high error sum. From the figures it is observed that the tracking 

of the responses are not exact, but are taken under consideration as some of the 

dynamic characteristics depict their improvement in the reduced models 

responses. 

Algorithm 4 consider the interval structure to be the major contributor 

towards the order reduction of the overall interval system. The proposal presents 

an analysis through two limits; lower and upper. 
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Algorithm 5 and 6, both are built on the ground of RA. The only key difference 

between them is the algorithmic steps for attaining the reduced models. Former 

considers the reciprocal of the higher order system to reduction procedure, 

whereas latter do not. Latter directly employs the steps over the higher order 

system without any reciprocity involvement. Both the techniques give stable 

models, minimal error and a considerable step response tracking.  

Algorithm 7 uses Routh approximant for order reduction. Examples state the 

proficiency through the error computed and the step response.  

Algorithm 8 is mixed form of two varied approximations namely Routh and 

Pade. It demonstrates appreciable outcome on each of the grounds whether it be 

step response, minimal error computation or model stability. It’s a substantial 

algorithm.  

Algorithm 9 and 10 revisits few noteworthy estimation techniques for 

simplification of discrete-time interval system. In particular, the denominator 

polynomial is computed by a new algorithm of reciprocity and numerator by two 

different prevailing techniques namely a) Direct Truncation and b) Pade 

Approximation. These algorithms encounter the limitation of computing high 

errors but not always; as can be seen through the examples. Thus are 

disregarded. Same is the case with stability. The techniques do not guarantee to 

generate stable models always, even if their higher representations are stable.  

5.3.3. Assorted Approach 

Techniques that submit their procedural step in a different manner than the 

prevailing techniques are illustrated here.  

Algorithm 11 is based on shifting coefficients. It is straightforward and 

simple with no computation. It poses to be superior, easy and direct method for 

the order reduction. 

Algorithm 12 is grounded on the base of classical approach of calculus i.e. 

Differentiation. The presented technique is better and effortless with 

straightforward calculation. The algorithm is not commendable if discussed in 

terms of step response, but is thoughtful based on the minimal error 

computation. 

Algorithm 13 address a computationally simple and intuitively appealing 

algorithm based on Direct Truncation. It preserves the criterion of minimum error 

and step response tracking but do not guarantee to give stable models always.  

Algorithm 14 and 15 delivers two varied algorithms interlaced with the 

property of Mikhailov Stability Criterion. Precisely, this criterion is employed to 
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derive the reduced order denominator coefficients and the numerator coefficients 

are computed by a) Routh Approximation and b) Direct Truncation.  

Table 5.3 briefs about the findings for the proposed algorithms from Chapters 

3 and 4.  

Table 5.3: Findings for the proposed algorithms from Chapters 3 and 4 

Algorithms Minimal 

Error 

Stable Models Response 

Tracking 

Limitations 

 

01 Obtained Obtained Favorable --- 

02 Obtained Obtained Favorable --- 

03 Obtained Obtained Not Exactly Yes 

04 Obtained Obtained Favorable  

05 Obtained Obtained Favorable --- 

06 Obtained Obtained Favorable --- 

07 Obtained Obtained Favorable --- 

08 Obtained Obtained Favorable --- 

09 Obtained Not Always Not Exactly Yes 

10 Obtained Not Always Not Exactly Yes 

11 --- Yet to establish Favorable --- 

12 Obtained Yet to establish Not Exactly --- 

13 Obtained Not Always Favorable --- 

14 Obtained Obtained Favorable --- 

15 Obtained Obtained Favorable --- 

 

Among the proposed algorithms for discrete-time interval systems, few are 

appealing for their prolongation to real-time implementation namely  

04: Simplified Interval Structure 

05: Advanced Routh Approximation (A-RAM) 

06: Extended Direct Routh Approximation (E-DRAM)  

12: Classical Differentiation Approach 

This is discovered from an arena of an example available from the literature 

and all of the proposed techniques been applied over it. This establishment is 

based on the computation of minimal error as follows; 
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Example: Consider the third order interval system as  

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
    (5.11) 

Implication of the proposed algorithms in the thesis result for the computation 

of the errors as depicted in the Table 5.4. 

Table 5.4: Error for 2nd order reduced models by proposed algorithms 

Algorithms Error 

Lower Limit Upper Limit 

Gamma-Delta Appr. 0.1292 0.0443 

Multiplicative Operator 0.0442 0.1860 

Novel Arrangement 0.0211 0.0233 

Simplified Interval Structure 3.4294X10-4 0.0018 

A-RAM 0.0013 0.0060 

E-DRAM 0.0012 0.0128 

Routh Approximant 0.0029 0.0235 

Routh Appr. & Pade Appr. 0.1079 0.0342 

Direct Truncation & Routh Appr. 0.0553 0.0033 

Pade Appr. & Routh Appr. 1.1265 0.2183 

Non-Computational … … 

Differentiation 0.0031 0.0123 

Direct Truncation 0.0278 0.0077 

Routh Appr. & Mikhailov 0.3154 0.0947 

Direct Truncation & Mikhailov 0.0079 0.0643 
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5.3.4. Conclusions 

All of the proposed algorithms pose some or the other special feature 

cumulative of minimal error, step response and model stability.  This chapter 

attempted to summaries all the findings from the thesis.  

5.4. Summary 

This chapter conclude with two varied but significant case studies. One states 

an appraisal of the discrete transformation techniques for presenting the higher 

order discrete-time interval systems accessible to continuous time algorithms. 

Precisely, it procures the linear transformation for being simple and easily 

accessible for discrete transformation. Another case study demonstrates various 

properties of the proposed techniques compared among themselves under one 

table.  

Next chapter concludes the thesis with the possible scope for future works. 

  

  


