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Chapter 4 

Order Reduction Techniques based on 

Assorted Approach 

4.1. Preamble 

Another classification of the proposed algorithms in the thesis is entitled 

Assorted Approach. These are grounded on various procedural steps for 

computation of reduced models. The five proposed algorithms are Non-

Computational Technique, Classical Differentiation Method, Direct Truncation 

Method, and amalgamation of Mikhailov Stability Criterion with Routh 

Approximation and Direct Truncation. All these algorithms are illustrated below. 

4.2. Non-Computational Technique 

Other appropriate name for this technique is Shifting Algorithm. This is stated 

to be superior, simple and direct method for the order reduction of an interval 

system as compared to the existing methods in the literature. The algorithm is 

understood better in the next sections.  

Methodology 

As the name suggest, the coefficients of the higher order system in (2.13) is 

shifted towards right (n-k) times, where k=1, 2…, in deriving kR z of order (n-1), 

(n-2),… For an instance, the higher order system pose n=3 and the desired 

reduced order model is k=2; then the higher order system is shifted (n-k) times 

i.e. (3-2=1). The algorithm is explained through numerical examples. 

The shifting results in the desired kth order model, k n as 
          

1 2
1 1 2 2 0 0

1
1 1 0 0

, , ..... ,

, , ..... ,

k k
k k k kk

k k k
k k k k k

n n z n n z n nN z
R z

D z d d z d d z d d
       (4.1) 

Example 

E.4.2.1. Consider the third order transfer function from [66], [86] as  

2

3 3 2

3.25,3.35 3.5,3.65 2.8,3

5.4,5.5 1,1.1 1.5,1.6 2.1,2.15

z z
H z

z z z
          (4.2) 
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The reduced models obtained by shifting the coefficients (n-k) times with n=3 

and k=1, 2 are 

Shifting (3-2=1) time and (3-1=2) times result second and first order models 

respectively as 

2 2 1

3.25,3.35 3.5,3.65

5.4,5.5 1,1.1 1.5,1.6

z
R z

z z
                                          (4.3) 

1

3.25,3.35

5.4,5.5 1,1.1
R z

z
                                                  (4.4)  

The step responses of the higher-order and reduced -order model procured by 

the proposed method are shown in Figures 4.1 and 4.2 for lower and upper limits 

transfer functions respectively. In addition, Figures 4.3 and 4.4 depict the 

frequency response for the lower and upper limit models. 

 

E.4.2.2. Consider the digital control system of eighth order as  

7 6 5

4 3 2

8 8 7 6

1.6484,1.7156 1.0937,1.1383 0.2142, 0.2058

0.1490,0.1550 0.5263, 0.5057 0.2672, 0.2568

0.0431,0.0449 0.0061, 0.0059

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

0.2058,0.2142

z z z

z z z

z
H z

z z z

z5 4 3

2

0.1550, 0.1490 0.5057,0.5263

0.2568,0.3672 0.0449, 0.0431 0.0059,0.0061

z z

z z

  (4.5) 

Reduced models using the proposed method where n=8 and k=2, 1 are; 

By shifting (8-2=6) times second order reduced model is 

2 2

1.6484,1.7156 1.0937,1.1383

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

z
R z

z z
             (4.6) 

Shifting (8-1=7) times result first order reduced model as  

1

1.6484,1.7156

23.52,24.48 1.7156, 1.6484
R z

z              
     (4.7) 

Step responses for the lower and upper limits are shown in Figures 4.5 and 

4.6 respectively. Figures 4.7 and 4.8 demonstrate the frequency response of the 

two limit transfer functions correspondingly.  
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Figure 4.1: Step responses of reduced models (Lower Limit) for E.4.2.1 

 

Figure 4.2: Step responses of reduced models (Upper Limit) for E.4.2.1 
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Figure 4.3: Frequency responses of reduced models (Lower Limit) for E.4.2.1 

 

Figure 4.4: Frequency responses of reduced models (Upper Limit) for E.4.2.1 
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Figure 4.5: Step responses of reduced models (Lower Limit) for E.4.2.2 

 

Figure 4.6: Step responses of reduced models (Upper Limit) for E.4.2.2 
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Figure 4.7: Frequency responses of reduced models (Lower Limit) for E.4.2.2 

 

Figure 4.8: Frequency responses of reduced models (Upper Limit) for E.4.2.2 
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Figures for the above examples deliver an approximate tracking of the step 

and frequency responses of the reduced order models to the responses of the 

higher order systems. This lead to the acceptance of the proposed algorithm. 

Conclusions 

A superior, simple and direct method for the order reduction is proposed.  

4.3. Direct Truncation Method 

The Truncation algorithm pioneered by Gustafson [109] was for systems with 

no numerator dynamics in their transfer function. Later on Shamash [110] 

extended the algorithm to multivariable systems with numerator dynamics and 

confronted to be simple and computationally superior to the prevailing reduction 

techniques. Defense for being simple and easily accessible plotted an arena for 

its consideration towards discrete-time interval system as elaborated below.   

Methodology 

Exclude the higher order terms and retain the coefficients of desired order 

transfer function. By the definition of transfer function, the order of numerator 

should be one less than or equal to that of the denominator.  

Precisely, as per the illustration, the denominator polynomial of the thk  order 

reduced model is given as  

1
1 1 0 0, , ... ,k k

k k k k kD z d d z d d z d d          (4.8) 

And the numerator polynomial as 

 1 2
1 1 2 2 0 0, , ... ,k k

k k k k kN z n n z n n z n n                    (4.9) 

This is better understood by the examples ahead.  

Example 

E.4.3.1. Consider a third order interval transfer function from [68], [83] be 

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
    

         

(4.10) 

By the algorithm, the truncated numerator and denominator for second order 

reduced model are  

2 3,4 8,10N z z
         

(4.11) 

2
2 9,9.5 4.9,5 0.8,0.85D z z z      

  
(4.12) 

This delivers the reduced model as 
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2 2

3,4 8,10

9,9.5 4.9,5 0.8,0.85

z
R z

z z
     

(4.13) 

The comparison between errors of the above models with the prevailing models 

are tabulated in Table 4.1. 

Table 4.1: Error for 2nd order reduced models for E.4.3.1 

 

Methods 

Error 

Lower Limit Upper Limit 

Proposed Method 0.0278 0.0077 

Pade and Dominant Poles [68] 0.1810 0.0741 

Dominant Pole and Direct Series [83] 0.0555 0.0097 

 

The step response of higher order system and lower order models by the 

proposed method with the other prevailing algorithms are shown in Figure 4.9 

(lower limit) and Figure 4.10 (upper limit). The acceptance of the proposed 

algorithm is affirmed by the followed frequency responses in Figures 4.11 and 

4.12 for lower and upper limit transfer functions respectively. 

 

E.4.3.2. Consider a fourth order system from [77] described as 

3 2

3 4 3 2

12,14 220,240 800,900 1100,1200

1,1.2 16,18 90,100 160,180 110,120

z z z
H z

z z z z
   (4.14) 

The third order reduced model, by the proposed algorithm is 

2

3 3 2

220,240 800,900 1100,1200

16,18 90,100 160,180 110,120

z z
R z

z z z
    

(4.15) 

Table 4.2 present the error computed for evaluation. 

Table 4.2: Error for 3rd order reduced models for E.4.3.2 

 

Methods 

Error 

Lower Limit Upper Limit 

Proposed Method 3.0625 2.77 

Differentiation Tech. [77] 4 5.44 

 

Figures 4.13 and 4.14 depict the frequency response for lower and upper limit 

reduced models respectively. 
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Figure 4.9: Step responses of reduced models (Lower Limit) for E.4.3.1 

  

Figure 4.10: Step responses of reduced models (Upper Limit) for E.4.3.1 
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Figure 4.11: Frequency responses of reduced models (Lower Limit) for E.4.3.1 

 

Figure 4.12: Frequency responses of reduced models (Upper Limit) for E.4.3.1 
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Figure 4.13: Frequency responses of reduced models (Lower Limit) for E.4.3.2 

 

Figure 4.14: Frequency responses of reduced models (Upper Limit) for E.4.3.2 
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Discussion 

Frequency response for E.4.3.1 commit to be stable and E.4.3.2 state to be 

unstable. This submit that the technique is although simple and acceptable 

based on error computation, but it lacks the advantage of generating stable 

models for varied circumstance.  

Conclusions 

This section elaborates the extension of a well-known and easy to apply 

method of Direct Truncation to discrete-time interval systems. Also states that 

the reduced model is not guaranteed to be stable, even if the higher order system 

is stable.  

4.4. Classical Differentiation Technique 

In this approach, the fundamental theorem of Calculus i.e. Differentiation 

technique is accessed. Since this theorem is not directly applicable on discrete-

time systems, a proper transformation to its equivalent continuous-time domain 

is performed. As mentioned in Chapter 2, section 2.8, any of the two 

transformations can be applied, here considered is Euler Forward differentiation 

technique i.e. z=1+p for the ease of computation and simplicity. The algorithm 

proposed is discussed below in steps.  

Methodology 

Step 1: Transform nH z  in (2.13) to nH p  in (2.16).  

Step 2: Successive differentiation of nH p  gives kR p  of order k, where k=n-

1, n-2….  

Step 3: Apply inverse transformation p=z-1 on kR p  to obtain the desired 

order reduced model kR z . 

Example 

E.4.4.1. Consider the third order transfer function available from [68], [90], [107] 

as 

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
       (4.16) 

Step 1: 
2

3 3 2

1,2 5,8 12,16

6,6 27,27.5 40.9,42 20.7,21.35

p p
H p

p p p
         (4.17)  
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Step 2: 2 2

2,4 5,8

18,18 54,55 40.9,42

p
R p

p p
                   (4.18) 

            1

2,4

36,36 54,55
R p

p
                    (4.19) 

 Step 3: The second and first order reduced models obtained by proposed 

algorithm are  

           2 2

2,4 1,6

18,18 18,19 3,9.6

z
R z

z z
                   (4.20) 

           1

2,4

36,36 18,19
R z

z
        (4.21) 

The error for derived 1R z and 2R z along with errors obtained by other 

methods is demonstrated in Table 4.3. 

Table 4.3: Error for 1st and 2nd order reduced models for E.4.4.1 

 

Methods 

Error 

1st Order 2nd Order 

Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Method 0.0123 0.0094 0.0031 0.0123 

Pade/Dominant Poles [68] 0.1398 0.0195 0.1810 0.0741 

Gamma-Delta Appr. [90] 0.0157 0.0035 0.1292 0.0443 

Direct-Truncation [107] 2.1419 2.7778 0.0278 0.0077 

 

Depiction of the step responses of the higher-order system 3H z and the 

reduced second order models by the proposed and existing algorithms are in 

Figures 4.15 and 4.16 for lower and upper limits transfer functions respectively. 

Figures 4.17 and 4.18 present the frequency response for the two limits models 

correspondingly.  
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Figure 4.15: Step responses of reduced models (Lower Limit) for E.4.4.1 

  

Figure 4.16: Step responses of reduced models (Upper Limit) for E.4.4.1 
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Figure 4.17: Frequency responses of reduced models (Lower Limit) for E.4.4.1 

 

Figure 4.18: Frequency responses of reduced models (Upper Limit) for E.4.4.1 
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E.4.4.2. Consider the digital control system as 

7 6 5

4 3 2

8 8 7 6

1.6484,1.7156 1.0937,1.1383 0.2142, 0.2058

0.1490,0.1550 0.5263, 0.5057 0.2672, 0.2568

0.0431,0.0449 0.0061, 0.0059

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

0.2058,0.2142

z z z

z z z

z
H z

z z z

z5 4 3

2

0.1550, 0.1490 0.5057,0.5263

0.2568,0.3672 0.0449, 0.0431 0.0059,0.0061

z z

z z

 

             (4.22) 

The reduced models of this system are  

2 2

8307.94,8646.62 448.776,1158,264

474566.4,493516.8 47353.82,29592.86 39462.26,38258.42

z
R z

z z

             (4.23) 

1

8307.936,8646.624

949132.8,987033.6 47353.824,29592.864
R z

z
      (4.24) 

The error for the considered example is in Table 4.4. 

Table 4.4: Error for 1st and 2nd order reduced models for E.4.4.2 

 

Methods 

Error 

1st Order 2nd Order 

Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Method 0.0038 0.0038 0.0028 0.0028 

Gamma-Delta [90] 0.0021 0.0019 0.0035 0.0034 

Direct-Trunc. [107] 0.0096 0.0027 0.0043 0.0045 

 

The step responses of the higher-order system, the respective first and second 

order reduced models to consolidate the algorithm are shown in Figures 4.19 and 

4.20 for the two limits respectively. Later Figures 4.21 and 4.22 depict the 

frequency responses correspondingly. 

Conclusions 

Finally the method is submitted to be simple and straightforward in 

computation. The method is very much different from the earlier existing 

differential techniques grounded on every aspect. The method employs the 

differential calculus for order reduction of discrete-time interval system. 
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Figure 4.19: Step responses of reduced models (Lower Limit) for E.4.4.2 

  

Figure 4.20: Step responses of reduced models (Upper Limit) for E.4.4.2 
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Figure 4.21: Frequency responses of reduced models (Lower Limit) for E.4.4.2 

 

Figure 4.22: Frequency responses of reduced models (Upper Limit) for E.4.4.2 
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4.5. Using the advantages of Mikhailov Stability Criterion 

Mikhailov Stability Criterion is an alternate technique to check stability in 

conventional control system apart from Routh approximation. Considering the 

retention of stability characteristic in the reduced model, it is used here interlaced 

with the other reduction methodologies. Precisely, the reduced order denominator 

is derived using the Mikhailov criterion and the reduced numerator is by two 

varied algorithms namely Routh Approximation and Direct Truncation. Firmly, the 

present section, confers two different algorithms elaborated ahead.  

Methodology 

Algorithms discussed under this heading are well known for their significance 

of retaining stability in continuous-time domain, which would be violated when 

employed directly to discrete-time domain. Thus, bilinear transformation is used 

to yield nH w from nH z  as in (2.15). 

Usage of Mikhailov criterion to compute the reduced order denominator of kth 

order is as;  

Replacew j  in nA w and separate the polynomial in real and imaginary 

parts as in [111]
   

1,1 1,1 1,2 1,2 1, 1 1, 1, , ... ,
n

n n nA j j j        (4.25) 

where    1,1 1,1 0 0, , , ……. 1, 1 1, 1, ,n n n n  

2 3
1,1 1,1 1,3 1,3 1,2 1,2 1,4 1,4, , ... , , ...j      (4.26) 

j w                (4.27) 

 

From (4.27), equate 0  and 0 , to determine the intersecting 

frequencies 1 1 1 10, , ,..., ,i n n , where 

1 1 2 2 1 1, , ... ,n n  

Thereafter, consider kA w  as the expected approximated denominator and 

replacew j , that results  

kA j j                                                 (4.28) 

with 2
1,1 1,1 1,3 1,3, , ...d d d d  and 3

1,2 1,2 1,4 1,4, , ...d d d d  



 

Model Order Reduction of Discrete-Time Interval Systems 

 4.5. Using the advantages of Mikhailov Stability Criterion 

118 

To defend the stability of the reduced model, its Mikhailov frequency 

characteristic is intersected with abscissa and ordinate axis’s alternatively, k 

times (the order of the reduced model is k) in the same manner as that of the 

higher order system. Thus, the first k number of intersecting frequencies 

1 1 2 2 1 10, , , , ,..., ,k k are kept unchanged and set to be the roots of 

0  and 0 . 

Then, 2 2 2 2 2 2
1 1 1 3 5,               (4.29a)    

         2 2 2 2 2 2
2 2 2 4 6,                        (4.29b) 

for 
2

2 ,i i i               i=1, 2, 3,……… 

Values of 1 1,  and 2 2,  are calculated by equating 0 0  and

1 1 1 1, , , which on substitution in (4.29), proceed to the 

derivation of 

kA j j           (4.30) 

In the above incurred kA j , replace j w to acquire the cut down 

denominator, which on inverse transformation confers the desired kD z . 

1,1 1,1 1,2 1,2 1, 1 1, 1, , ... , k
k k kA w d d d d w d d w                  (4.31) 

The above description delivers the computation of reduced denominator by 

Mikhailov criterion. Henceforth, the derivation of the desired order numerator, 

resulting in the overall reduced order model through two varied algorithms is 

discussed below.  

Algorithm 1: Routh Approximation 

For computing the reduced order numerator, the acquainted w-domain 

transfer function nH w is utilized here. The first two rows of the Routh array 

shown in Table 4.5 are drafted from the numerator polynomial nB w .  

     The advancement in the table array below third row is by the conventional 

Routh algorithm described in (4.32) where 3i and 1 - 3 /2j n i  

2, 2, 1, 1 1, 1

, , 2, 1 2, 1

1,1 1,1

, ,
, ,

,

i j i j i j i j

i j i j i j i j

i i

b b b b
b b b b

b b       

    (4.32) 



 

Model Order Reduction of Discrete-Time Interval Systems 

 4.5. Using the advantages of Mikhailov Stability Criterion 

119 

Once the numerator table is put forward, the reduced kB w  is derived using 

it’s 1n k th  and 2n k th rows as

1 2 3
1 ,1 1 ,1 2 ,1 2 ,1 1 ,2 1 ,2, , , ...k k k

k n k n k n k n k n k n kB w b b w b b w b b w  

            (4.33) 

Table 4.5: Numerator array 

1,1 1,1

,  

,  

n nb b

b b
 

2 2

1,2 1,2

,  

,  

n nb b

b b
 

4 4

1,3 1,3

,  

,  

n nb b

b b
 

… 

1 1

2,1 2,1

,  

,  

n nb b

b b
 

3 3

2,2 2,2

,  

,  

n nb b

b b
 

5 5

2,3 2,3

,  

,  

n nb b

b b
 

... 

3,1 3,1,  b b  3,2 3,2,  b b    

. .   

,1 ,1,  n nb b     

 

The computed kB w and the obtained kA w  results in the desired kR w by 

appropriate substitution, which on inverse transformation i.e. 1 1w z z

confers kR z . 

Algorithm 2: Direct Truncation 

This is another approach to obtain the reduced order numerator. By this 

algorithm, as elaborated in section 4.3 [107], the desired order numerator 

polynomial kN z  is truncated directly from nN z  which on appropriate 

substitution in k k kR z N z D z  offer the reduced order model. 

kD z  is considered from the Mikhailov Stability criterion. 

The selection of the order of numerator polynomial is significantly one less 

than the desired order denominator. Examples hereunder accompany the better 

understanding of the above algorithms.  

Example 

E.4.5.1. Consider the higher order system and its w-domain equivalent as  
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2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
             (4.34)  

3 2
3

3 3 2
3

9, 5 17,27 34, 24 12,16

0.55,1.2 5.9,6.65 19.45,20.2 20.7,21.35

w w wB w
H w

A w w w w
  

(4.35) 

Reduced order denominator is derived by the Mikhailov Stability criterion; 

where substitution of w j in 3A w from (4.35) gives 

2 3
3 20.7,21.35 5.9,6.65 19.45,20.2 0.55,1.2A j j w   (4.36)  

The roots are obtained as , 0, 1.76,1.9 , 4.02,6.05i i and values of 

1 1, 5.73,6.86 and 2 2, 15.12,18.49 as per the algorithmic rules. 

Finally, the desired denominator in w-domain and its z-domain equivalent 

after inverse transformation is obtained as 

2
2 5.73,6.86 15.12,18.49 17.82,24.76A w w w      (4.37) 

2
2 38.67,50.11 21.92,38.06 5.06,16.5D z z z            (4.38) 

Once, the denominator is received, the numerator polynomials are produced 

by applying two varied algorithms described below; 

Algorithm 1 

The Routh approximation rule is applied here. The complete Routh array 

drafted with the numerator polynomial taken from (3.45) is shown in Table 4.6 

offering the coefficients of the reduced order numerator formulated by (4.33) as 

 2 31.77, 15.52 12,16B w w        (4.39) 

Table 4.6: Numerator array for E.4.5.1 

3w  9, 5  34, 24  

2w  17,27  12,16  

1w  31.77, 15.52   

0w  12,16   
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Since the reduced order numerator and denominator polynomials are 

obtained in w-domain, conceive (4.37) and (4.39) for forming the desired reduced 

order model which on appropriate inverse transformation lead to 2R z as  

2

2 2

19.77,0.48 24,32 27.52,47.77

38.67,50.11 21.92,38.06 5.06,16.5

z z
R z

z z
         (4.40) 

Algorithm 2 

The direct truncation truncates the numerator polynomial from 3N z to 

receive the reduced order numerator polynomial as 

2 3,4 8,10N z z          (4.41) 

This derived numerator 2N z is combined with the above obtained reduced 

denominator from (4.38) both in z-domain resulting in the reduced model as  

2 2

3,4 8,10

38.67,50.11 21.92,38.06 5.06,16.5

z
R z

z z
           (4.42) 

For the considered example, the reduced order models are computed by the 

two different algorithms. Their validation through the error computation is made 

known in Table 4.7 and is compared to the prevailing techniques. The step 

responses of the reduced models through different algorithms is depicted in 

Figures 4.23 and 4.24 for the two limit transfer functions respectively. Figures 

4.25 and 4.26 present their frequency responses correspondingly. 

Table 4.7: Error for 2nd order reduced models for E.4.5.1 

 

Methods 

Error 

Lower Limit Upper Limit 

Proposed Case 1 (Routh Appr. & Mikhailov) 0.3154 0.0947 

Proposed Case 2 (Direct Trunc. & Mikhailov) 0.0079 0.0643 

Pade and Dominant Poles [68] 0.1810 0.0741 

Dominant poles & Direct Series [83] 0.3237 0.3229 

Mikhailov & Factor Division [88]  0.0105 0.3250 

Gamma-Delta Approximation [90] 0.1292 0.0443 

Direct Truncation [107] 0.0278 0.0077 
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 Figure 4.23: Step responses of reduced models (Lower Limit) for E.4.5.1 

  

Figure 4.24: Step responses of reduced models (Upper Limit) for E.4.5.1 

0 0.05 0.1 0.15 0.2 0.25

-1

-0.5

0

0.5

1

1.5

Higher Order System

Case 1 (Routh Appr. & Mikhailov)

Case 2 (Direct Trunc. & Mikhailov)

Pade & Dominant Poles

Direct Truncation

Gamma-Delta Approximation

Dominant Poles & Direct Series

Mikhailov & Factor Division

Step Response

Time (seconds)

A
m

p
li

tu
d

e

0 0.05 0.1 0.15 0.2 0.25

-1

-0.5

0

0.5

1

1.5

2

Higher Order System

Case 1 (Routh Appr. & Mikhailov)

Case 2 (Direct Trunc. & Mikhailov)

Pade & Dominant Poles

Direct Truncation

Gamma-Delta Approximation

Dominant Poles & Direct Series

Mikhailov & Factor Division

Step Response

Time (seconds)

A
m

p
li

tu
d

e



 

Model Order Reduction of Discrete-Time Interval Systems 

 4.5. Using the advantages of Mikhailov Stability Criterion 

123 

 

Figure 4.25: Frequency responses of reduced models (Lower Limit) for E.4.5.1 

 

Figure 4.26: Frequency responses of reduced models (Upper Limit) for E.4.5.1. 
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algorithms over the prevailing techniques. Next example will project the 

acceptance of the algorithms over the real time systems.  

E.4.5.2. Consider the real-time digital control system with transfer function  

7 6 5

4 3 2

8 8 7 6

1.6484,1.7156 1.0937,1.1383 0.2142, 0.2058

0.1490,0.1550 0.5263, 0.5057 0.2672, 0.2568

0.0431,0.0449 0.0061, 0.0059

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

0.2058,0.2142

z z z

z z z

z
H z

z z z

z5 4 3

2

0.1550, 0.1490 0.5057,0.5263

0.2568,0.3672 0.0449, 0.0431 0.0059,0.0061

z z

z z

 

            (4.43) 

By the above elaborated algorithms, the reduced order model are obtained as 

Algorithm 1 

2

2 2

13.21,21.14 3.84,4.14 17.15, 9.22

714.09,813.60 1264.4, 1094.6 454.38,553.89

z z
R z

z z
  (4.44)

 

 

Algorithm 2 

2 2

0.0431,0.0449 0.0061, 0.0059

714.09,813.60 1264.4, 1094.6 454.38,553.89

z
R z

z z
  (4.45)

  

      Table 4.8 present the minimum error for the considered example that 

showcase the acceptance for the adoption of the proposed algorithms. 

Table 4.8: Error for 2nd order reduced models for E.4.5.2 

Discussion 

This section discourse the valuable findings from the algorithms. A firm query 

that rises is what would be the basis for obtaining the reduced order numerator 

and denominator polynomials? To answer this is, by the definition of transfer 

function available in various control system books, the order of the numerator 

should be equal or one less than that of the denominator. So, the order of the 

 

Methods 

Error 

Lower Limit Upper Limit 

Proposed Case 1 (Routh Appr. & Mikhailov) 5.2320x10-4 6.9155x10-4 

Proposed Case 2 (Direct Trunc. & Mikhailov) 0.0049 0.0049 

Direct-Truncation [107] 0.0043 0.0045 

Gamma-Delta Appr. [90] 0.0035 0.0034 
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polynomials should be strict and not be hampered. A reasonable explanation for 

the witnessing the varied orders of the transfer functions is as below; 

Equation (2.14) which is the mathematical representation of the desired 

reduced order model, express the numerator polynomials to be one less than that 

of the denominator polynomials. But in (2.15), both the polynomials are of same 

order; the reason behind this equalization is the bilinear transformation of (2.13) 

for implication of the varied continuous-time domain algorithms namely 

Mikhailov Criterion and Routh approximation over the discrete-time domain 

systems. Now, all the simplification as per the proposed algorithms is carried over 

the (2.15).  

Approaching to algorithm 1, the reduced order model is derived in w-domain 

with one less numerator order than that of the denominator but, upon inverse 

bilinear transformation to obtain the model in z-domain, the reduced order model 

increases its order by one, equaling it to the denominator polynomials. And in 

algorithm 2, since it’s a direct approach, the reduced order model is produced as 

desired with a difference of one between the numerator and denominator 

polynomials.  

Moreover, the stability of the reduced order models is checked and is stated 

to be preserved as declared by the proposed algorithms interlaced with the 

advantages of the Mikhailov Stability Criterion technique. 

Conclusions 

Stability preservation, acknowledged being the major advantage of Mikhailov 

criterion is considered here for order reduction of discrete-time interval system. 

This is used to derive the reduced denominator amalgamated with the numerator 

polynomial being computed by two varied algorithms namely Routh Approximation 

and Direct Truncation. The two proposed algorithms justify for the novelty. 

4.6. Summary 

This chapter conclude with an acceptable proposal of techniques based on 

Assorted approach for order reduction of discrete-time interval systems. 

Collectively the chapter illustrated five algorithms.  

Throughout the elaboration of the algorithms in Chapter 3 and 4, a conclusion 

is gathered for each of the algorithm. The next chapter will summarize all these 

algorithms with their individual advantages and disadvantages under one roof.  

 


