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Chapter 3 

Order Reduction Techniques based on 

Routh Approximation Approach 

3.1. Preamble 

This chapter illustrates reduction methodologies, for discrete-time interval 

systems grouped under Routh Approximation approach. The procedural steps 

considers RA for computation of reduced order numerator and/or denominator 

coefficients. Cumulative of ten methodologies are described here. They are coined 

as Gamma Delta Approximation, Arithmetic Operator or Multiplicative Approach, 

Novel Arrangement of Routh Array, Simplified Interval Structure, Advanced Routh 

Approximation Method (A-RAM), Extended Direct Routh Approximation Method (E-

DRAM), Routh Approximant algorithm, Routh Approximation and Pade 

Approximations, and combination of Direct Truncation and Pade Approximation 

with Routh Approximation. Algorithms termed above are illustrated below. 

A quick revision to RA is demonstrated below for better understanding of the 

proposed algorithm. Consider a polynomial of the form 

1 2 3
1 2 3 0...n n n n

n n n nc c p c p c p c p c          (3.1) 

The conventional Routh table drafted from the above polynomial is depicted 

in Table 3.1. All the entries in the table are of interval form as 0,0 0,0 0,0,c c c , or 

in general as, , , ,,i j i j i jc c c with i=0,1,2,… and j=0,1,2,….  

The first row of the table consists of odd coefficients (i.e., first, third, fifth, etc.) 

and the second row comprises the even coefficients (i.e., second, fourth, sixth, 

etc.). Entries down the third row is by 

2, 1 1, 2, 1, 1

,

2, 1,

. .

.

i j i j i j i j

i j

i j i j

c c c c
c

c c
 (3.2) 

where 2i and 0,1,2,...j

It should be noted that the effects of all coefficients of the first two rows are 

taken into consideration while computing the coefficients below the third rows.
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Table 3.1: Conventional Routh table 

0,0nc c  2 0,1nc c  4 0,2nc c  6 0,3nc c  … 

1 1,0nc c  3 1,1nc c  5 1,2nc c  7 1,3nc c  … 

2,0c  2,1c  2,2c    

… … …   

1,0nc  1,1nc     

,0nc      

3.2. Gamma-Delta Approximation 

Advantage of RA for stability preservation affirm its employment in the 

proposed algorithm for order reduction of discrete-time interval system.   

Methodology 

Consider the transfer function of higher order interval systems (2.13) and its 

derived reduced model as (2.14). The algorithm elaborates below; 

To apply Routh algorithm, here used is bilinear transformation on (2.13) that 

result  

1
1 1 0 0

1
1 1 0 0

, , .... ,

, , ..... ,

n n
n n n nn

n n n
n n n n n

b b w b b w b bB w
H w

A w a a w a a w a a
     (3.3) 

The desired 's  and 's parameters are obtained from the denominator and 

numerator polynomials drafted in array according to the Tables 3.2 and 3.3. 

Entries of the first two rows of the tables are from (3.3) and the entries down the 

third row is by  

For Table 3.2 

2, 1 2, 1 1, 1, 2, 2, 1, 1 1, 1

, ,

1, 1,

, , , ,
,

,

i j i j i j i j i j i j i j i j

i j i j

i j i j

a a a a a a a a
a a

a a
     (3.4) 

with 2i and 0,1,2,...j  

And for Table 3.3 

2, 1 2, 1 2, 2, 2, 2, 2, 1 2, 1

, ,

2, 2,

, , , ,
,

,

i j i j i j i j i j i j i j i j

i j i j

i j i j

b b a a b b a a
b b

a a
                (3.5)

 

with 2i and 0,1,2,...j  
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Table 3.2: Routh table for denominator ( 's  parameter) 

0 0

0,0 0,0

,

,

a a

a a
 

2 2

0,1 0,1

,

,

a a

a a
 

4 4

0,2 0,2

,

,

a a

a a
 

... 

1 1

1,0 1,0

,

,

a a

a a
 

3 3

1,1 1,1

,

,

a a

a a
 

5 5

1,2 1,2

,

,

a a

a a
 

... 

.    

1,0 1,0,n na a     

,0 ,0,n na a

 

   

Table 3.3: Routh table for numerator ( 's parameters) 

0 0

1,0 1,0

,

,

b b

b b
 

2 2

1,1 1,1

,

,

b b

b b
 

4 4

1,2 1,2

,

,

b b

b b
 

.. 

1 1

2,0 2,0

,

,

b b

b b
 

3 3

2,1 2,1

,

,

b b

b b
 

5 5

2,2 2,2

,

,

b b

b b
 

.. 

.    

1,0 1,0,n nb b     

,0 ,0,n nb b

 

   

 

From both the tables, the 's  and 's parameters are computed as 

1,0 1,0

,0 ,0

,

,

k k

k

k k

a a

a a
  where k=1,2,3….                             (3.6) 

,0 ,0

,0 ,0

,

,

k k

k

k k

b b

a a
      where k=1,2,3….         (3.7) 

The desired order of k, i.e. equivalent to the required number of 

parameters are retained allowing the reduced model of kth order as  

k
k

k

B w
R w

A w
                                                      (3.8)                                            

where 2
2 1,k k k k kA w w A w A w

                  
(3.9) 

1 2
2 1, ,k

k k k k k k kB w w w B w B w
    

(3.10) 
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with 1

1
A w

w
,            0 1A w ,  1 0B w ,             0 0B w       

The above combinations result in the first and second order reduced models as  

1 1

1

1 1

,

,
R w

w
       (3.11) 

2 2 2 2 1 1

2 2
2 2 2 2 1 1

, , ,

, , ,

w
R w

w w
      (3.12) 

Once, the reduced model is obtained in w-domain, application of inverse 

transformation offer the same in z-domain. 

The algorithm is better understood in the next section through examples. 

Example 

E.3.2.1. Consider the higher order interval transfer function from [68] be  

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
          

     (3.13) 

Transformation to w-domain result  

2

3 3 2

5,9 18, 12 12,16

0.55,1.2 5.9,6.65 19.45,20.2 20.7,21.35

w w
H w

w w w
(3.14) 

's - 's parameters obtained from the denominator and numerator tables are 

1 1, 1.02,1.09 , 2 2, 2.92,3.42  

1 1, 0.59,0.82 , 2 2, 3.05, 1.80  

Substitution of the above parameters in (3.12) gives 

2 2

3.05, 1.80 1.722,2.80

2.92,3.42 2.97,3.72

w
R w

w w
(3.15) 

which on appropriate inverse transformation results in the desired z-domain 

reduced models as  

2 2

1.328,1 3.522,5.85

6.89,8.14 3.94,5.44 0.55,1.8

z
R z

z z
               

(3.16) 

Table 3.4 brings out the comparative study of the errors of the proposed and 

existing method. 

The step response of higher order system and the derived reduced order model 

and the model by prevailing method is presented in Figure 3.1 (lower limit) and 

Figure 3.2 (upper limit). Figures 3.3 and 3.4 demonstrate the frequency response 

of the derived lower and upper limit reduced models respectively.  
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Table 3.4: Error for 2nd order reduced models for E.3.2.1 

Methods 
Error 

Lower Limit Upper Limit 

Proposed Method 0.1292 0.0443 

Pade and Dominant Poles [68] 0.1810 0.0741 

 

E.3.2.2.Consider a real-time digital control system with 8H z as  

7 6 5

4 3 2

8 8 7 6

1.6484,1.7156 1.0937,1.1383 0.2142, 0.2058

0.1490,0.1550 0.5263, 0.5057 0.2672, 0.2568

0.0431,0.0449 0.0061, 0.0059

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

0.2058,0.2142

z z z

z z z

z
H z

z z z

z5 4 3

2

0.1550, 0.1490 0.5057,0.5263

0.2568,0.3672 0.0449, 0.0431 0.0059,0.0061

z z

z z

(3.17) 

Using algorithmic steps and computed parameters, the reduced models are as    

1

0.01,0.01

0.88, 0.86
R z

z
                   (3.18)      

and  

2 2

0.02,0.02 0.02, 0.02

1.73, 1.70 0.73,0.76

z
R z

z z
                (3.19) 

Error for 1R z and 2R z  are shown in Table 3.5. 

Table 3.5: Error for 1st and 2nd order reduced models for E.3.2.2 

 

Method 

Error 

1st Order 2nd Order 

Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Algorithm 0.0035 0.0034 0.0021 0.0019 

 

A strict question arises from the above examples is to why the numerator 

coefficient is one less that the denominator coefficient, when the bilinear 

transformation is employed. Its implication should result in the same order of 

numerator and denominator polynomials. The reason for this query is, here 

numerator and denominator polynomials are considered separately equal to zero 

i.e. 0nN z  and 0nD z . Thereafter transformation is applied.  
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Figure 3.1: Step responses of reduced models (Lower Limit) for E.3.2.1 

  

Figure 3.2: Step responses of reduced models (Upper Limit) for E.3.2.1 
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Figure 3.3: Frequency responses of reduced models (Lower Limit) for E.3.2.1 

 

Figure 3.4: Frequency responses of reduced models (Upper Limit) for E.3.2.1 
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Conclusions 

An acceptable approximation is conferred for discrete-time interval 

systems. The examples present the retention of stability through the frequency 

responses. The proposed algorithm can be stated as an extension from the work 

of Bandyopadhyay et. al. [25] that guarantee to deliver an asymptotically stable 

model. The earlier technique existed for continuous-time interval system.   

3.3. An Arithmetic Operator Approximation 

Under this technique the basic arithmetic operator is engaged on the ground 

of Routh algorithm, retaining the dynamic characteristic of the higher order 

system to its lower equivalent, i.e. stability retention. The proposal here is novel 

in two folds; one is the application of an arithmetic operator and other is finding 

the best possible arrangement from the varied combinations (mentioned as cases 

hereunder) of Routh table for deriving the numerator and denominator 

polynomials coefficients for the reduced model. For use of RA, here employed is 

Euler Forward differentiation technique i.e. 1z p . Below elaborated is the 

algorithm. 

Methodology 

Consider the higher order system be represented by (3.20) with m n  

equivalent to (2.13) 

1
1 0

, 1
1 0

...

...

m m
m m m

m n n n
n n n

N z N z N z N
H z

D z D z D z D
                          (3.20) 

where ,i i iN N N and ,i i iD D D    i=0, 1,2,…,m, n. 

Linear transformation alter (3.20) to  

1
1 0

, 1
1 0

...

...

m m
m m m

m n n n
n n n

B p b p b p b
H p

A p a p a p a
            (3.21)  

where ,i i ib b b and ,i i ia a a       i=0, 1,2,…,m, n.   

As stated about the novelty of the algorithm, here comes in the first one;  

In literature, the division operator is applied on (3.21) to compute either time-

moments or Markov parameters. In this work, multiplication between the 

numerator and denominator polynomials offering a larger polynomial retaining 

the characteristics of both 

and denominator polynomials. It is obtained as;  
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1 2 1

1 2 1 0= ...q q q

q m n q q qT p B p A p c p c p c p c p c                        (3.22) 

where ,i i ic c c , i=0,1,2…..,q and q m n . 

Coefficients of the reduced order transfer function are computed from varied 

combinations of µ- -tables described in Table 3.6 and Table 3.7 respectively. 

Entries for the µ- table is from qT p -table is from ˆ
qT p . The latter is 

the inverse of former one defined as 

1 2 1

0 1 2 1

1 1ˆ ...q q q

q q q qT p T c p c p c p c p c
p p

               (3.23) 

The tables represent the conventional Routh Array (drafted in Table 3.1) and 

its corresponding rules (3.1) to obtain the below entries of the entries down the 

third row where , , ,,i j i j i jc c c , i=2,3,4,…,q-1,q  and  j=0,1,2…q.  

The two tables (Table 3.6 and Table 3.7) are considered accordingly for 

obtaining the reduced order transfer function kR p , where k q  or k m n . 

The tables are considered under the following four cases; 

Case 1:  

Use only µ-table for both numerator and denominator polynomials 

Case 2:  

Use only -table for both numerator and denominator polynomials 

Case 3:  

Use µ-table for numerator and -table for denominator polynomials 

Case 4:  

Use -table for numerator and µ-table for denominator polynomials 

The tables via four cases offer the reduced polynomial coefficients considered 

accordingly to [106]. Thus, reduced transfer function of order k q  or k m n  

is constructed with 1q th and 2q k th rows for numerator and 1q k th  

and 2q k th rows for denominator coefficients. Accordigly, the generalized 

transfer function through the cases is expressed as  

1 2 3

1 ,0 2 ,0 1 ,1

1 2

1 ,0 2 ,0 1 ,1

...

...

k k k
q q k qk

k k k k
k q k q k q k

b p b p b pB p
R p

A p a p a p a p
                     (3.24) 

The obtained kR p  transforms to the desired kR z by p=z-1 transformation 

resulting in (2.14).  
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Table 3.6: µ-(Routh) Table 

0,0 qc c  0,1 2qc c  0,2 4qc c  0,3 6qc c  … 

1,0 1qc c  1,1 3qc c  1,2 5qc c  1,3 7qc c  … 

2,0c  2,1c  2,2c    

… … …   

1,0qc  1,1qc     

,0qc      

-(Routh) Table  

0,0 0c c  0,1 2c c  0,2 4c c  0,3 6c c  … 

1,0 1c c  1,1 3c c  1,2 5c c  1,3 7c c  … 

2,0c  2,1c  2,2c    

… … …   

1,0qc  1,1qc     

,0qc      

 

Finally, the case that offers new result based on the performance tools and 

preserve the dynamic characteristics of stability justifies for novelty of the 

proposed algorithm.  

Figure 3.5 demonstrate the flow chart for the arithmetic operator 

approximation. 

The algorithm is better illustrated and recognized through numerical 

examples in the next section. 

Example 

The practice to obtain the reduced model under the discussed cases is 

performed in this section. The results of the examples are compared and justified 

through error sum computed for reduced models using proposed algorithm cases.  

 

E.3.3.1. Consider a higher order interval system from [66] with its equivalent p-

domain representation as 

2

2,3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
                (3.25)
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Stop 

Lower Order 
Interval Model 

  

Higher Order 
Interval System

  

Linear Transformation 

 

Multiply both the polynomials

  

Start 

Case 1: Use only µ-table 
for both Numerator and 

denominator polynomials 

Case 3: Use µ-table for 
Numerator and -table for 
denominator polynomials 

 

Case 2: Use only -table 
for both Numerator and 

denominator polynomials 

Inverse Linear Transformation 

Case 4: Use -table for 
Numerator and µ-table for 
denominator polynomials 

 

Derive µ-table with   

-table with  

Compare Cases and 

obtain Best Result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Flow chart for the arithmetic operator approximation 
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2

3 3 2

1,2 5,8 12,16

6,6 27,27.5 40.9,42 20.7,21.35

p p
H p

p p p
              (3.26) 

Multiplying the two polynomials (numerator and denominator), result 5T p

as 

5 4 3
5

2

6,12 57,103 247.9,400

              + 549.2,818.7 594.3,842.8 248.4,341.6

T p p p p

p p
                   (3.27) 

Entries for Table 3.8 and Table 3.9 are conceived from (3.27) according to (3.22) 

and (3.23) respectively.  

Table 3.8: µ-Table 

5p  6,12  247.9,400  594.3,842.8  

4p  57,103  549.2,818.7  248.4,341.6  

-Table 

5p  248.4,341.6  549.2,818.7  57,103  

4p  594.3,842.8  247.9,400  6,12  

 

Reduced models allowing the four cases are derived as: 

Case 1 

2 2

352,1045.04 796.64, 10.4

580.1,737.79 1123.58,2205.24 1376.74,727.39

z
R z

z z
        (3.28) 

Case 2 

2 2

25.27,564.13 558.13, 13.27

19.33,360.07 694.87,602.79 577.46,346.8

z
R z

z z
   (3.29) 

Case 3 

2 2

352,1045.04 796.64, 10.4

19.33,360.07 694.87,602.79 577.46,346.8

z
R z

z z
   (3.30) 

Case 4 

2 2

25.27,564.13 558.13, 13.27

580.1,737.79 1123.58,2205.24 1376.74,727.39

z
R z

z z
  (3.31) 

Table 3.10 showcase the computed error for the above cases comprising 

comparison with existing techniques. It present a fair indication toward Case 4 

replacing the other methods. Discussion over the explicit finding is done in next 

section.  
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Figure 3.6 and Figure 3.7 present the frequency domain response for all the 

cases for lower and upper limits transfer functions respectively. The figures depict 

an appropriate tracking of the responses affirming the preservation of higher 

order characteristics. 

Table 3.10: Error for 2nd order reduced model for E.3.3.1 

 

Methods 

Error 

Lower Limit Upper Limit 

Proposed Case 1 0.5982 1.1731 

Proposed Case 2 2.1726 1.5213 

Proposed Case 3 337.7032 6.5997 

Proposed Case 4 0.0442 0.1860 

Pade & Dominant Poles [68] 0.1810 0.0741 

Dominant Pole and Direct Series [83] 0.3237 0.3229 

Gamma-Delta Appr. [90]  0.1292 0.0443 

Direct Truncation [107]  0.0278 0.0077 

 

From the example, it is clear that the proposed Case 4 is good enough for 

deriving the reduced order model. One probable query rises from the example and 

cases included in the tables as, why are other cases considered in tables when 

Case 4 is quiet good and acceptable? The reason for this inclusion is to justify 

that among all the cases, Case 4 stands the best. This justification would not be 

liable without any evidence.  

E.3.3.2. Consider the automatic voltage regulator problem with a perturbation in 

the system. 

4 3 2

5 5 4 3

3

0.95,1.05 11.10,12.27 11.56,112.78

                      1.76,1.95 0.031,0.03

168.22,185.93 473.21, 428.14 349.91,386.74

      94.12,85.15 4.07, 3.68 1.24, 1.13

z z z

z
H z

z z z

z z

  (3.32) 

Reduced order model obtained by Case 4 is   

2 2

3740.8,5834 5674.2,3936
( )

41060,45979 121011,111415 71886,76564

z
R z

z z
    (3.33)  
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Figure 3.6: Frequency responses of reduced models (Lower Limit) for E.3.3.1 

Figure 3.7: Frequency responses of reduced models (Upper Limit) for E.3.3.1 

Errors of the computed reduced model, depicted in Table 3.11 indicate the 

superiority of the accepted Case 4.  
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Table 3.11: Error for 2nd order reduced model for E.3.3.2 

Methods Error 

Lower Limit Upper Limit 

Proposed Case 1 0.4927 0.3988 

Proposed Case 2 0.4091 0.0137 

Proposed Case 3 24.2955 0.3731 

Proposed Case 4 0.0073 0.0147 

Discussion 

Examples in prior section confer the proposed cases that closely approximate 

higher order system by their reduced model. It is observed that the different cases 

offer variations in error computation, making it difficult to choose the best case. 

One observations is as; in Table 3.10, Direct Truncation and Gamma-Delta 

approximation offers minimum error. After a purposeful consideration of both the 

error tables, the proposed Case 4 appears to be the best offering minimum error. 

The prime advantage of Case 4 over the others listed in tables is the stability 

retention which others do not assure. This check is performed by the highly 

recognized Kharitonov theorem for interval systems. Thus, regardless of 

comparatively higher error computation, Case 4 is superior to the exiting 

techniques. 

As a future work, the reduced-order model may be derived by considering 

numerator and denominator polynomials respectively in different tables. It may 

yield better result as they individually incur the respective polynomials 

characteristics. In this propos

polynomial that have the characteristics of both the numerator and the 

denominator polynomials. Disadvantage of considering individual polynomials is 

being lengthy that requires involving more tables and hence more computation, 

whereas the proposed one is competitively small in computation with only 

formation of two µ- -tables. 

Conclusions 

The motive of proposing an efficient algorithm that preserves the system 

stability is achieved. Basis of the contributed novelty is through the implication 

of multiplicative operator and the particular case of deriving the reduced order 

numerator and denominator polynomials.  
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3.4. Novel Combination of Routh Array 

This is another algorithm that poses the importance of preserving stability of 

the derived reduced models based on RA. The realm for attaining novelty is finding 

the possible arrangements (mentioned as cases) of the numerator and 

denominator polynomials for computing the Routh array. For application of RA, 

here employed is bilinear transformation 1 1z w w . Algorithm is illustrated 

below. 

Methodology 

Consider (2.13) as higher order system which on transformation results in 

(2.15). For computing the conventional Routh array for discovering the novel 

arrangement of the numerator and denominator polynomials of the reduced 

models, consider Table 3.1.  

Entries of the first two rows in the above Routh table for numerator and 

denominator polynomials is drafted by considering (2.15) through the following 

two cases;  

Case 1 

For numerator 

1st Row;  ,i j kc b  where  i=0; j=0,1,2,3,…; k=n,n-2,n-4,... 

2nd Row; ,i j kc b  where  i=1;j=0,1,2,3,…; k=n-1,n-3,n-5,… 

For denominator 

1st Row;  ,i j kc a  where  i=0;j=0,1,2,3,…; k=n,n-2,n-4,… 

2nd Row; ,i j kc a  where  i=1;j=0,1,2,3,…;k=n-1,n-3,n-5,… 

Case 2: interchange the 2nd row entries of numerator and denominator tables in  

             Case 1 

For numerator 

1st Row; ,i j kc b  where  i=0;j=0,1,2,3,…; k=n,n-2,n-4,….. 

2nd Row; ,i j kc a  where  i=1; j=0,1,2,3,…;k=n-1,n-3,n-5,... 

For denominator 

1st Row; ,i j kc a   where  i=0; j=0,1,2,3,…; k=n,n-2,n-4,… 

2nd Row; ,i j kc b  where  i=1;j=0,1,2,3,…;k=n-1,n-3,n-5,... 

 

For other two cases, reciprocate (2.15) to (3.34) as   
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1
0 0 1 1 1 1

1
0 0 1 1 1 1

, , ... , ,
ˆ

, , ... , ,

n n
n n n nn

n n n n
n n n n n

b b w b b w b b w b bB w
H w

A w a a w a a w a a w a a
    (3.34) 

Case 3 

For numerator 

1st Row; ,i j kc b   where  i=0; j=0, 1, 2, 3,…… k=0, 2, 4…. 

2nd Row; ,i j kc b   where  i=1; j=0, 1, 2, 3,…… k=1, 3, 5… 

For denominator 

1st Row; ,i j kc a    where  i=0; j=0, 1, 2, 3,…… k=0, 2, 4….. 

2nd Row; ,i j kc a  where  i=1; j=0, 1, 2, 3,…… k=1, 3, 5,…. 

Case 4: interchange the 2nd row entries of numerator and denominator tables in     

             Case 3 

For numerator 

1st Row; ,i j kc b   where  i=0; j=0, 1, 2, 3,…… k=0, 2, 4…. 

2nd Row; ,i j kc a  where  i=1; j=0, 1, 2, 3,…… k=1, 3, 5,…. 

For denominator 

1st Row;  ,i j kc a  where  i=0; j=0, 1, 2, 3,…… k=0, 2, 4….. 

2nd Row; ,i j kc b  where  i=1; j=0, 1, 2, 3,…… k=1, 3, 5… 

Once, the first two rows are available from the above stated cases, the entries 

down the table from third row is computed by the conventional Routh algorithm 

as in (3.1).  

From the above computed tables, the reduced order model kR w  where k n

is constructed with 1n k th and 2n k th rows of denominator table; along 

with 1n th  and 2n k th rows of numerator table, represented as 

1 2 3

1 ,0 2 ,0 1 ,1

1 2

1 ,0 2 ,0 1 ,1

...

...

k k k
n n k nk

k k k k
k n k n k n k

b w b w b wB w
R p

A w a w a w a w
              (3.35)  

with the respective interval coefficients.  

kR w
 
result in the required kR z after appropriate inverse transformation.  

Example 

The best arrangement which form the novelty of the proposal is better 

understood in this section through numerical examples available from literature. 

The result from the mentioned cases is compared with the prevailing techniques 
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for assessment on the basis of error sum. The step responses also verify the 

obtained results. In the course of attaining the prime focus of the proposed 

algorithm i.e. the retention of stability; a limitation is discovered, which on later 

stage is ignored for the algorithm’s proficiency. This limitation is discussed in 

later part of this section.  

 

E.3.4.1. Consider third order interval system available from [68], [90], [107] as 

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
               (3.36) 

3 2

3 3 2

9, 5 17,27 34, 24 12,16

0.55,1.2 5.9,6.65 19.45,20.2 20.7,21.35

w w w
H w

w w w
           (3.37) 

First two rows of the Routh tables for Case 1 and Case 2 are fetched from 

above 3H w as  

Case 1: Table 3.12 and Table 3.13 for the denominator and numerator array. 

Table 3.12: Denominator array for Case 1 

3w  0.55,1.2  19.45,20.2  

2w  5.9,6.65  20.7,21.35  

Table 3.13: Numerator array for Case 1 

3w  9, 5  34, 24  

2w  17,27  12,16  

The obtained reduced order models from the above entries are 

1

12,16 12,16

35.8,39.83 2.22,6.25

z
R z

z
           (3.38) 

2

2 2

19.77,0.48 24,32 27.52,47.77

41.7,46.48 28.1,30.9 8.12,12.9

z z
R z

z z
             (3.39) 

Case 2: Table 3.14 and Table 3.15 state the denominator and numerator array 

and below are the reduced models. 

1

20.7,21.35 20.7,21.35

30.32,35.95 7.95, 2.32

z
R z

z
             (3.40) 

2

2 2

2.27,29.91 41.4,42.7 12.14,39.78

47.32,62.95 30, 2 9.05,24.68

z z
R z

z z
           (3.41) 
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Table 3.14: Denominator array for Case 2 

3w  0.55,1.2  19.45,20.2  

2w  17,27  12,16  

Table 3.15: Numerator array for Case 2 

3w  9, 5  34, 24  

2w  5.9,6.65  20.7,21.35  

 

Now for Case 3 and Case 4, reciprocate 3H w to 3Ĥ w and draft the two 

cases as 

3 2

3 3 2

12,16 34, 24 17,27 9, 5
ˆ

20.7,21.35 19.45,20.2 5.9,6.65 0.55,1.2

w w w
H w

w w w
       

     

(3.42) 

Case 3: Underneath Table 3.16 and Table 3.17 state the denominator and 

numerator array. 

Table 3.16: Denominator array for Case 3 

3w  20.7,21.35  5.9,6.65  

2w  19.45,20.2  0.55,1.2  

Table 3.17: Numerator array for Case 3 

3w  12,16  17,27  

2w  34, 24  9, 5  

The reduced models are 

1

9, 5 9, 5

5.13,7.28 3.38,5.53

z
R z

z
                 (3.43) 

2

2 2

2,20.23 22,50.46 16,34.23

24.58,27.48 36.5,39.3 13.92,16.82

z z
R z

z z
           (3.44) 

Case 4: Below Table 3.18 and Table 3.19 state the denominator and numerator 

array. 

The computed reduced models are 

1

0.55,1.2 0.55,1.2

11.1, 1.4 2.9,12.6

z
R z

z
              (3.45) 
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Table 3.18: Denominator array for Case 4 

3w  20.7,21.35  5.9,6.65  

2w  34, 24  9, 5  

Table 3.19: Numerator array for Case 4 

3w  12,16  17,27  

2w  19.45,20.2  0.55,1.2  

 

2

2 2

16.56,27.87 32.02,53.34 14.81,26.12

45.1, 25.4 58, 30 46.6, 26.9

z z
R z

z z
          (3.46)  

The computed error for the varied cases illustrated is made known in Table 

3.20. It is observed that the result for Case 2 is minimum, differentiating it from 

the other cases and the prevailing techniques and submitting its acceptance 

replacing the others. Limitation observed during the computation is explained in 

the next section. 

Another practice to authenticate the algorithm through step response is 

depicted in Figures 3.8 and 3.9 for lower and upper limits reduced models 

respectively. Figures emphasize that the response pattern of the higher order 

system is favourably preserved in the reduced order model.  

Table 3.20: Error for 1st and 2nd order reduced models for E.3.4.1 

 

Methods 

Error 

1st Order 2nd Order 

 Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Case 1 0.3456 0.3271 0.2894 0.1287 

Proposed Case 2 0.3644 0.1497 0.0211 0.0233 

Proposed Case 3 9.4259 1.8765 0.4812 1.9492 

Proposed Case 4 0.0801 96.0295 0.7302 6.1975 

Pade/Dominant Poles [68]  0.1398 0.0195 0.1810 0.0741 

Gamma-Delta Appr. [90] 0.0157 0.0035 0.1292 0.0443 

Direct Truncation [107] 2.1491 2.7778 0.0278 0.0077 
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Figure 3.8: Step responses of reduced models (Lower Limit) for E.3.4.1 

 

Figure 3.9: Step responses of reduced models (Upper Limit) for E.3.4.1 

From the above numerical example, the acceptable arrangement of the Routh 

Tables is Case 2, offering the minimum error and an acceptable step response. 
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E.3.2.4.2. Consider the real-time digital control system 

7 6 5

4 3 2

8 8 7 6

1.6484,1.7156 1.0937,1.1383 0.2142, 0.2058

0.1490,0.1550 0.5263, 0.5057 0.2672, 0.2568

0.0431,0.0449 0.0061, 0.0059

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

0.2058,0.2142

z z z

z z z

z
H z

z z z

z5 4 3

2

0.1550, 0.1490 0.5057,0.5263

0.2568,0.3672 0.0449, 0.0431 0.0059,0.0061

z z

z z

(3.47) 

By the proposed algorithm cases, the reduced order model are obtained as 

Case 1: 

1

1.92,2.07 1.92,2.07

110.83,291.57 247.58, 66.84

z
R z

z
            (3.48) 

2

2 2

13.21,21.14 3.84,4.14 17.15, 9.22

49.49,739.4 852.78,365.74 407.9,380.99

z z
R z

z z
        (3.49) 

Case 2: 

1

1.92,2.07 1.92,2.07

36.43,39.85 4.14,7.63

z
R z

z
             (3.50) 

2

2 2

14.94,182.65 3.84,4.14 178.66, 10.95

1222.74,886.15 1649.72,2563.3 1254.96,853.93

z z
R z

z z
   (3.51)  

Case 3: 

1

0.07,0.07 0.07,0.07

129.23,279.82 81.24,231.83

z
R z

z
                (3.52) 

2

2 2

5.69, 4.03 11.24, 8.2 5.69, 4.03

130.46,762.05 568.48,917.58 491.52,400.92

z z
R z

z z
         (3.53)  

Case 4: 

1

0.07,0.07 0.07,0.07

17.24,22.39 30.25, 25.6

z
R z

z
                 (3.54) 

2

2 2

181.98,211.74 364.1,423.34 181.98,211.74

1724.76,589.39 3534.1,1087.12 1716.9,597.25

z z
R z

z z
      (3.55)  

Error for 1R z and 2R z of E.3.4.2 is presented in Table 3.21. 

From the Table 3.21, for E.3.4.2., it is clear that the Case 2 gives a 

commendable result for real-time system also. This tends to believe that the 

arrangement in (Case 2) is acceptable to the real world. 
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Table 3.21: Error for 1st and 2nd order reduced models for E.3.4.2 

 

Methods 

Error 

1st Order 2nd Order 

 Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Case 1 3.1075x10-4 0.0030 17.5841 0.0033 

Proposed Case 2 0.0036 0.0033 0.0049 0.0250 

Proposed Case 3 0.0050 0.0040 0.0189 0.0064 

Proposed Case 4 0.0073 0.0036 0.0402 0.2480 

Discussion 

As stated earlier about the limitation discovered; from Table 3.20 it is observed 

that the error are sometimes more than that obtained by the other cases (eg. Error 

of 1st order lower limit is more than the other in the same column). Similarly in 

Table 3.21, few of the error computed by other cases are less as compared to the 

considered case. Since, the key focus to yield a stable reduced model is attained 

successfully in both the examples, the computation of high error sum can be 

neglected. 

Conclusions 

The novelty is explored from the domain of various cases constructed by the 

varied arrangements of numerator and denominator polynomials. A limitation 

discovered during the course of exploration of the best arrangement for 

approximation is also discussed.  

3.5. Simplified Interval Structure 

Interval systems are acquainted to comprise two limits within a boundary 

namely, lower and upper. In this proposal, these limits are considered to be the 

major contributor towards the order reduction of interval system. Linear 

transformation is applied here for application of RA. 

Methodology 

Consider a higher order discrete-time interval system be (2.13) which on linear 

transformation yield (2.16).  

Split the higher order interval system into two transfer functions as depicted 

below with lower and upper limits coefficients respectively where subscript L and 

U represent the lower and upper limits correspondingly. Splitting allows 

consideration of lower and upper coefficients properties individually. 
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1 2
1 2 0

1
1 0

...

...

n n
n n n

nL m n
n n n

B p b p b p b
H p

A p a p a p a
(3.56) 

1 2
1 2 0

1
1 0

...

...

n n
n n n

nU m m
n n n

B p b p b p b
H p

A p a p a p a
     (3.57)

Assume each of the numerator and denominator polynomials separately from 

the above transfer functions resulting in four characteristic polynomials (3.58-

3.61). These polynomials are used for computation of reduced model coefficients 

via RA.    

1 2
1 2 0...m m

n m mB p b p b p b     (3.58)  

1
1 0...n n

n n nA p a p a p a   (3.59) 

1
1 0...n n

n n nA p a p a p a       (3.60) 

1
1 0...n n

n n nA p a p a p a    (3.61) 

The first two polynomials are from (3.56), and next two are from (3.57). The 

above polynomials at this moment are considered separately for completing the 

Routh table depicted in Table 3.1.  

Completion of the tables permits for finding the desired coefficients for the 

reduced model transfer functions as stated in [106]. The numerator coefficients 

are obtained from the combinations of  1n th  & 1n k th rows of nB , nB  

polynomial tables. Correspondingly, the 1n k th  & 2n k th rows of nA , 

nA  Routh tables offer the denominator coefficients. Altogether, the expression for 

reduced interval transfer function is (3.62). 

1 2 3

1 ,0 2 ,0 1 ,1

1 2

1 ,0 2 ,0 1 ,1

...

...

k k k
n n k nk

k k k k
k n k n k n k

b p b p b pB p
R p

A p a p a p a p
(3.62) 

The factors of the above transfer function take the range structure when the 

anticipated elements from the tables are merged as represented by (3.63) and 

(3.64). This depiction seizes the interval coefficients for numerator and 

denominator respectively. 

,i i iB b b               i=0, 1… k            (3.63) 

,i i iA a a i=0, 1… k    (3.64) 

Inverse transformation on kR p lead to the desired reduced model as (2.14). 



Model Order Reduction of Discrete-Time Interval Systems 

 3.5. Simplified Interval Structure

49 

Start 

Higher Order 
System 

Linear Transformation 

Split the interval Transfer 
Function into Two 

Lower Limit Transfer 
Function and Apply 

Routh Approximation 

Consider the desired 
Lower limit coefficients 
from the Routh Table 

Upper Limit Transfer 
Function and Apply 

Routh Approximation 

Consider the desired 
Upper limit coefficients 
from the Routh Table 

Limit TrLimit 

Merge the two limit 
coefficients correspondingly 
into an interval coefficient 

Inverse Linear Transformation 

Lower Order 
Model 

Stop 

Figure 3.10 present the flowchart for the simplified interval structure 

approximation.  

 

Figure 3.10: Flow chart for the simplified interval structure approximation 

Example 

E.3.5.1: Consider the higher order discrete-time interval system available from 

[68], [83], [88], [90], [107], [108] be (3.65) whose p-domain representation is (3.66) 

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
(3.65) 



 

Model Order Reduction of Discrete-Time Interval Systems 

 3.5. Simplified Interval Structure 

50 

2

3 3 2

1,2 5,8 12,16

6,6 27,27.5 40.9,42 20.7,21.35

p p
H p

p p p
   (3.66) 

Split 3H p into two transfer functions through lower and upper limits 

respectively as  

2

3 3 2

1 5 12

6 27 40.9 20.7
L

p p
H p

p p p
    (3.67)

2

3 3 2

2 8 16

6 27.5 42 21.35
U

p p
H p

p p p
     (3.68) 

The four polynomials from above transfer function are 

2
3 1 5 12B p p        (3.69) 

3 2
3 6 27 40.9 20.7A p p p       (3.70) 

2
3 2 8 16B p p      (3.71) 

3 2
3 6 27.5 42 21.35A p p p      (3.72) 

Below drafted are the Routh tables from the above polynomials. Tables 3.22 

and 3.23 present the lower limit transfer function (3.67) or (3.69) and (3.70). 

Correspondingly, Tables 3.24 and 3.25 show the upper limit transfer function 

(3.68) or (3.71) and (3.72). Precisely, first, two tables depict the numerator and 

denominator of the lower limit coefficient, and latter two describe the upper limit 

factors. 

Table 3.22: Numerator coefficient for Lower Limit 3B   

2p  1 12 

1p  5  

0p  12  

Table 3.23: Denominator coefficient for Lower Limit 3A  

3p  6 40.9 

2p  27 20.7 

1p  36.3  

0p  20.7  
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Table 3.24: Numerator coefficient for Upper Limit 3B  

2p  2 16 

1p  8  

0p  16  

Table 3.25: Denominator coefficient for Upper Limit 3A  

3p  6 42 

2p  27.5 21.35 

1p  37.34  

0p  21.35  

Upon completion of the tables, the coefficients from the lower and upper limits 

tables merge as stated in (3.63) and (3.64) respectively. Specifically, Tables 3.22 

and 3.24 give the reduced numerator coefficients, and Tables 3.23 and 3.25 

provide reduced denominator coefficients. Overall the reduced interval model is 

obtained as 

2 2

5,8 4,11

27,27.5 34.3,35.34 10.36,12.55

z
R z

z z
      (3.73) 

Table 3.26 displays the error computed between the higher order system and 

the reduced models by the proposed algorithm and other prevailing techniques. 

The result offers an acceptable algorithm.  

Table 3.26: Error for 2nd order reduced models for E.3.5.1 

 

Methods 

Error 

Lower Limit Upper Limit 

Proposed Algorithm 3.4294x10-4 0.0018 

Pade & Dominant poles [68] 0.1810 0.0741 

Dominant poles & Direct Series [83] 0.3237 0.3229 

Mikhailov & Factor Division [88] 0.0105 0.0250 

Gamma Delta Appr. [90] 0.0278 0.0077 

Direct truncation [107] 0.1292 0.0443 

Routh-Pade Appr. [108] 0.1079 0.0342 

 

To affirm the algorithm strength, the tracking of the step response of the 

higher order system to their reduced approximates by different algorithms is 

shown in Figures 3.11 and 3.12 for lower and upper limits respectively. Figures 
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3.13 and 3.14 check the stability through frequency response for lower and upper 

limits correspondingly. 

Figure 3.11: Step responses of reduced models (Lower Limit) for E.3.5.1  

Figure 3.12: Step responses of reduced models (Upper Limit) for E.3.5.1  
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Figure 3.13: Frequency responses of reduced models (Lower Limit) for E.3.5.1  

Figure 3.14: Frequency responses of reduced models (Upper Limit) for E.3.5.1  

E.3.5.2. Consider another discrete-time interval system from [66], [88] be 
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2

3 3 2

3.25.3.35 10,10.35 9.55,10

5.4,5.5 17.2,17.6 19.7,20.3 10,10.35

p p
H p

p p p
  (3.74) 

The transfer functions with lower and upper limits are 

2

3 3 2

3.25 10 9.55

5.4 17.2 19.7 10
L

p p
H p

p p p
  (3.75) 

2

3 3 2

3.35 10.35 10

5.5 17.6 20.3 10.35
U

p p
H p

p p p
 (3.76) 

Tables 3.27 and 3.28 showcase the usage of the numerator and denominator 

coefficients of 3LH p and Tables 3.29, and 3.30 uses 3UH p . 

Table 3.27: Numerator coefficient for Lower Limit 3B  

2p  3.25 9.55 

1p  10  

0p  9.55  

Table 3.28: Denominator coefficient for Lower Limit 3A  

3p  5.4 19.7 

2p  17.2 10 

1p  16.56  

0p  10  

Table 3.29: Numerator coefficient for Upper Limit 3B  

2p  3.35 10 

1p  10.35  

0p  10  

Table 3.30: Denominator coefficient for Upper Limit 3A  

3p  5.5 20.3 

2p  17.6 10.35 

1p  17.06  

0p  10.35  

 

Combination of the required lower and upper limit coefficients from the above 

tables result in the reduced z-domain model as 
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2 2

10,10.35 0.8,0

17.2,17.6 14.56,15.06 10.14,11.39

z
R z

z z
     (3.77) 

Error in Table 3.31 substantiates towards the establishment of an algorithm. 

Figures 3.15 and 3.16 validate the algorithm through the tracking of step 

responses. And Figures 3.17 and 3.18 depict the frequency response for stability 

check of lower and upper limit transfer functions respectively. 

Table 3.31: Error for 2nd order reduced models for E.3.5.2 

 

Methods 

Error 

Lower Limit Upper Limit 

Proposed Algorithm 4.1847x10-4 4.4196 x10-4 

Multipoint Pade Appr. [66] 0.0721 0.0392 

Mikhailov & Factor Division [88] 0.0194 0.0889 

Gamma Delta Appr. [90] 0.0011 5.4626 x10-5 

 

Figure 3.15: Step responses of reduced models (Lower Limit) for E.3.5.2  
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Figure 3.16: Step responses of reduced models (Upper Limit) for E.3.5.2  

Figure 3.17: Frequency responses of reduced models (Lower Limit) for E.3.5.2 
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Figure 3.18: Frequency responses of reduced models (Upper Limit) for E.3.5.2 

Conclusions 

The novelty in the proposed algorithm is the splitting of interval system into 

two transfer functions. One with lower limit coefficients and other with upper 

limit coefficients respectively. Later on, RA is applied on each of the numerator 

and denominator polynomials.  

3.6. Advanced Routh Approximation Method (A-RAM) 

This algorithm unfolds the prevailing techniques based on RA that assures to 

be simple and features the advantage of retaining the model stability. This is a 

possible advancement of Hutton and Friedland’s [24] work from fixed coefficients 

to discrete-time interval coefficients system, thus named A-RAM.  

Methodology 

For simplification based on RA, here engaged is linear transformation that 

result in (2.16). 

The A-RAM uses transfer function ˆ
nH p related to nH p  by the following 

transformation, which is obtained by reversing the order of the polynomial 

coefficients.  
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1 2
0 0 1 1 1 1

1
0 0 1 1

, , ... ,1 1ˆ
, , ... ,

n n
n n

n n n n
n n

b b p b b p b b
H p H

p p a a p a a p a a
         (3.78)  

Routh table from ˆ
nH p , for computing uncertain parameters ˆ ,i i i and 

ˆ ,i i i with the application of denominator and numerator polynomials are 

shown in Table 3.32 and Table 3.33 respectively. Entries from the third row in 

the tables are by (3.79) and (3.80). 

, , 2, 1 2, 1 1 1 1, 1 1, 1, , , ,i j i j i j i j i i i j i ja a a a a a   i=2,3,. & j=0,1,2..  (3.79) 

, , 2, 1 2, 1 1 1 1, 1 1, 1, , , ,i j i j i j i j i i i j i jb b b b a a    i=2,3,. & j=0,1,2...  (3.80) 

Table 3.32: Denominator array for î  parameter 

0 0

0,0 0,0

,

,

a a

a a
 

2 2

0,1 0,1

,

,

a a

a a
 

4 4

0,2 0,2

,

,

a a

a a
 

….. 

1 1

1,0 1,0

,

,

a a

a a
 

3 3

1,1 1,1

,

,

a a

a a
 

5 5

1,2 1,2

,

,

a a

a a
 

….. 

…….    

1,0 1,0,n na a     

,0 ,0,n na a     

Table 3.33: Numerator array for ˆ
i  parameter 

0 0

1,0 1,0

,

,

b b

b b
 

2 2

1,1 1,1

,

,

b b

b b
 

4 4

1,2 1,2

,

,

b b

b b
 

….. 

1 1

2,0 2,0

,

,

b b

b b
 

3 3

2,1 2,1

,

,

b b

b b
 

5 5

2,2 2,2

,

,

b b

b b
 

….. 

…..    

1,0 1,0,n nb b     

,0 ,0,n nb b     

 

where 
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1,0 1,0

,0 ,0

,
ˆ

,

i i

i

i i

a a

a a
  with i=1,2,3….                  (3.81) 

,0 ,0

,0 ,0

,
ˆ

,

i i

i

i i

b b

a a
      with i=1,2,3….                          (3.82) 

Thereafter, the first k, parameters of ˆˆ  tables are retained for obtaining 

the thk order model.  

ˆ
ˆ

ˆ
k

k

k

B p
R p

A p
           (3.83)                                            

where 2 1
ˆ ˆ ˆˆk k k kA p A p pA p                                                        (3.84)  

          2 1
ˆ ˆ ˆ ˆˆk k k k kB p B p pB p                   (3.85) 

with 1
ˆ 1A p ,   0

ˆ 1A p ,    1
ˆ 0B p ,   0

ˆ 0B p      

Using the above equations, the first and second order reduced models are 

drawn as  

1 1

1

1 1

,
ˆ

1 ,
R p

p
                   (3.86) 

2 2 2 2 1 1

2 2
2 2 2 2 1 1

, , ,
ˆ

1 , , ,

p
R p

p p
                (3.87) 

After ˆ
kR p  computation, kR p is obtained by proper reciprocation and the 

desired z-domain model is obtained by 1p z  transformation. 

The proposed algorithm is represented by flow diagram in Figure 3.19. 

 

 

 

 

Figure 3.19: Flow diagram of the algorithmic steps for A-RAM 

Example 

The examples establish a comparative study of the proposed method with the 

prevailing techniques 

E.4.6.1. Consider the third order system from [68], [83], [90], [107] with p-domain 

equivalent as 

A-RAM 

Reduced  

Order Model 
p=z-1 

Transform 
Reciprocal 

Transformation 
z=p+1 

Transform 

Higher Order 
System 

nH z nH p ˆ
nH p ˆ

kR p kR p kR z

Reciprocal 
Transformation 
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2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
                 (3.88) 

2

3 3 2

1,2 5,8 12,16

6,6 27,27.5 40.9,42 20.7,21.35

p p
H p

p p p
    (3.89) 

By algorithm, reciprocal of the above system is (3.90) and ˆˆ  parameters 

obtained are;          

2

3 3 2

12,16 5,8 1,2
ˆ

20.7,21.35 40.9,42 27,27.5 6,6

p p
H p

p p p
            (3.90) 

1 1, 0.49,0.52 , 2 2, 1.66,1.75  

1 1, 0.28,0.39 , 2 2, 0.20,0.34  

These parameters lead to the reduced models as 

1

0.28,0.39

0.51, 0.48
R z

z
                              (3.91)      

and                              

2 2

0.20,0.34 0.14,0.48

0.34, 0.25 0.07,0.25

z
R z

z z
                  (3.92) 

The error for 1R z and 2R z along with those obtained by the prevailing 

techniques shown in Table 3.34, confirms the merit of the proposed method. Step 

response of the reduced models for lower and upper limit transfer functions are 

shown in Figure 3.20 and Figure 3.21 respectively for E.3.6.1. Later Figure 3.22 

and Figure 3.23 depict the frequency responses for the two limit transfer 

functions correspondingly. 

Table 3.34: Error for 1st and 2nd order reduced models for E.3.6.1 

 

Methods 

Error 

1st Order 2nd Order 

Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Algorithm 0.0140 0.0030 0.0011 4.44x10-05 

Pade & Dominant Pole [68] 0.1398 0.0195 0.1810 0.0741 

Dominant Pole/Direct Series [83] 0.4839 0.4134 0.3237 0.3229 

Gamma-Delta Appr. [90] 0.0157 0.0035 0.1292 0.0443 

Direct Truncation [107] 2.1491 2.7778 0.0278 0.0077 
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Figure 3.20: Step responses of reduced models (Lower Limit) for E.3.6.1 

 

Figure 3.21: Step responses of reduced models (Upper Limit) for E.3.6.1 
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Figure 3.22: Frequency responses of reduced models (Lower Limit) for E.3.6.1 

 

Figure 3.23: Frequency responses of reduced models (Upper Limit) for E.3.6.1 
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7 6 5

4 3 2

8 8 7 6

1.6484,1.7156 1.0937,1.1383 0.2142, 0.2058

0.1490,0.1550 0.5263, 0.5057 0.2672, 0.2568

0.0431,0.0449 0.0061, 0.0059

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

0.2058,0.2142

z z z

z z z

z
H z

z z z

z5 4 3

2

0.1550, 0.1490 0.5057,0.5263

0.2568,0.3672 0.0449, 0.0431 0.0059,0.0061

z z

z z

           (3.93) 

Using algorithmic steps and parameters computed, the reduced models are as    

1

0.01,0.01

0.88, 0.86
R z

z
         (3.94)      

and  

2 2

0.03,0.03 0.03, 0.02

1.64, 1.58 0.63,0.70

z
R z

z z
                (3.95) 

Error for 1R z and 2R z  are shown in Table 3.35. Their step response are in 

Figures 3.24 and 3.25 for lower and upper limits respectively. Figures 3.26 and 

3.27 depict their frequency responses correspondingly. 

Table 3.35: Error for 1st and 2nd order reduced models for E.3.6.2 

 

Method 

Error 

1st Order 2nd Order 

Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Algorithm 0.0036 0.0036 0.0016 0.0016 

 

Conclusions 

The proposed algorithm is an approach for approximating a higher-order 

interval system by a lower order interval model based on RA method. 

Accompanied examples confirm the algorithm to be efficient that uphold the 

dynamic characteristics of the original system giving better and satisfactory 

results. 
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Figure 3.24: Step responses of reduced models (Lower Limit) for E.3.6.2 

Figure 3.25: Step responses of reduced models (Upper Limit) for E.3.6.2 
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Figure 3.26: Frequency responses of reduced models (Lower Limit) for E.3.6.1 

 

Figure 3.27: Frequency responses of reduced models (Upper Limit) for E.3.6.2 
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3.7. Extended Direct Routh Approximation Method (E-DRAM) 

Similar to the technique in section 3.6, an extension is presented from non-

interval coefficient system to interval coefficient system, based on Direct Routh 

Approximation Method (DRAM) in [54]. This DRAM is accepted as an amendment 

of Routh Approximation Method (RAM) demonstrated in [24], in a manner for 

being free from the reciprocal transformation. The proposed algorithm is 

designated E-DRAM. 

Methodology 

Routh approximation rules employ 1z p transformation on nH z  

resulting in (2.16). 

Using above transfer function, interval 's is calculated using the 

denominator polynomial stated in Table 3.36 as  

1,0 1,0

,0 ,0

,
,

,

i i

i i

i i

a a

a a
  for i=1, 2, 3….                 (3.96) 

and  

, , 2, 1 2, 1 1 1 1, 1 1, 1, , , ,i j i j i j i j i i i j i ja a a a a a               (3.97) 

with i=2,3,4……. and j=0,1,2,….. 

Table 3.36: Denominator a -parameter 

0 0

0,0 0,0

,

,

a a

a a
 

2 2

0,1 0,1

,

,

a a

a a
 

4 4

0,2 0,2

,

,

a a

a a
 

….. 

1 1

1,0 1,0

,

,

a a

a a
 

3 3

1,1 1,1

,

,

a a

a a
 

5 5

1,2 1,2

,

,

a a

a a
 

….. 

…….    

1,0 1,0,n na a     

,0 ,0,n na a     

 

Similarly, interval 's is obtained from numerator polynomial as shown in 

Table 3.37,  

,0 ,0

,0 ,0

,
,

,

i i

i i

i i

b b

a a
 for i=1, 2, 3….                  (3.98) 
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and     

, , 1, 1 1, 1 1 1 1, 1 1, 1, , , ,i j i j i j i j i i i j i jb b b b a a                         (3.99) 

for i=3,4……. and j=0,1,2,….. 

Table 3.37: Numerator a -parameter 

0 0

1,0 1,0

,

,

b b

b b
 

2 2

1,1 1,1

,

,

b b

b b
 

4 4

1,2 1,2

,

,

b b

b b
 

….. 

1 1

2,0 2,0

,

,

b b

b b
 

3 3

2,1 2,1

,

,

b b

b b
 

5 5

2,2 2,2

,

,

b b

b b
 

….. 

…..    

1,0 1,0,n nb b     

,0 ,0,n nb b     

 

From the computed parameters, the reduced order numerator and 

denominator are drawn as 

1 1 1,B p                               (3.100a) 

1 1 1,A p p                         (3.100b) 

2 2 2 2 2 1 1, , ,B p p               (3.101a) 

2
2 2 2 2 2 1 1, , ,A p p p and so on…              (3.101b) 

In general, kB p  and kA p  can be specified by                  

1 2
2 1, ,k

k k k k k k kB p p p B p B p                (3.102a)  

2
2 1,k k k k kA p p A p A p                                  (3.102b)  

with 1
1A p

p
, 0 1A p , 1 0B p , 0 0B p  

Thereafter, inverse transformation of derived kR p , results in the desired z-

domain reduced model transfer function. 

The algorithmic steps of the proposed technique is shown as a flow diagram 

in Figure 3.28. 
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Figure 3.28: Flow diagram of the algorithmic steps for E-DRAM 

Example

E.3.7.1. Consider the third order system represented by (3.103) from [68], [83], 

[90], [107] and (3.104) gives its p-domain representation 

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
                (3.103) 

2

3 3 2

1,2 5,8 12,16

6,6 27,27.5 40.9,42 20.7,21.35

p p
H p

p p p
               (3.104) 

's  and 's  parameters obtained from (3.104) are 

1 1, 0.21,0.22 , 2 2, 0.717,0.759 , 

1 1, 0.036,0.074 , 2 2, 0.132,0.220 .

These parameters in (3.100) and (3.101) lead to the following reduced models              

1

0.036,0.074

0.78, 0.79
R z

z
                      (3.105)  

and                                        

2 2

0.132,0.220 0.195, 0.079

1.283, 1.241 0.391,0.449

z
R z

z z
               (3.106) 

The error for 1R z and 2R z along with those obtained by other prevailing 

methods shown in Table 3.38, confirms the fact that a satisfactory approximation 

is achieved.  

Figures 3.29 and 3.30 depict the step response and Figures 3.31 and 3.32 

present the frequency response for the lower and upper limit reduced models 

respectively. 

Reduced Order Model 

E-DRAM 

Inverse Transformation 

Transformation z=p+1 

Higher Order System 
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Table 3.38: Error for 1st and 2nd order reduced models for E.3.7.1 

 

Methods 

Error 

1st Order 2nd Order 

Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Algorithm 0.0171 0.0673 0.0012 0.0128 

Pade & Dominant Pole [68] 0.1398 0.0195 0.1810 0.0741 

Dominant Pole/Direct Series [83] 0.4839 0.4134 0.3237 0.3229 

Gamma-Delta Appr. [90] 0.0157 0.0035 0.1292 0.0443 

Direct Truncation [107] 2.1491 2.7778 0.0278 0.0077 

 

E.3.7.2. Let transfer function of seventh order be (3.107) with its p-domain 

representation as (3.108)  

6 5 4

3 2

4 4

7 7 6 5

4

0.0077,0.0080 0.0092, 0.0088 0.0124, 0.0119

0.0259,0.0270 0.0177, 0.0170 0.0047,0.0049

4.8073e , 4.6187e

0.98,1.02 5.5417, 5.3243 12.5538,13.0662

17.3502, 16.6698 13

z z z

z z z

H z
z z z

z 3 2.4456,13.9944 6.8626, 6.5934

1.8208,1.8952 0.2276, 0.2186

z z

z

            

                     (3.107) 

6 5 4

3 2

7 7 6 5

4 3

0.0077,0.0080 0.037,0.0392 0.0571,0.0641

0.0383,0.0514 0.0091,0.0246 0.0024,0.0083

0.0890, 0.0823

0.98,1.02 1.3183,1.8157 0.1164,2.5464

3.4067,4.4967 6.9512,7.1912 7.6345

p p p

p p p

H p
p p p

p p 2,7.5885

4.5896,4.5376 1.1819,1.1697

p

p

        

                             (3.108) 

Parameters from (3.108) are obtained as  

1 1, 0.5397,0.7737 , 2 2, 0.5050,0.3508  

1 1, 0.0042,0.0061 , 2 2, 0.0109,0.0076  

These parameters result in the following reduced models                   

1

0.0042,0.0061

0.4603, 0.2263
R z

z
                   (3.109) 

and                                         
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2 2

0.0109,0.0076 0.0107,0.0130

2.5050, 1.6492 0.2585,1.7764

z
R z

z z
                 (3.110) 

The error for reduced models of order 1 and 2 are shown in Table 3.39. Figures 

3.33 and 3.34 present the frequency response for the lower and upper limit 

reduced models respectively for E.3.7.2. 

Table 3.39: Error for 1st and 2nd order reduced models for E.3.7.2. 

 

Method 

Error 

1st Order 2nd Order 

Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Algorithm 1.3375x10-5 3.0385 x10-6 3.5183 x10-4 5.9116 x10-8 

 

 

Figure 3.29: Step responses of reduced models (Lower Limit) for E.3.7.1 
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Figure 3.30: Step responses of reduced models (Upper Limit) for E.3.7.1 

 

Figure 3.31: Frequency responses of reduced models (Lower Limit) for E.3.7.1 
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Figure 3.32: Frequency responses of reduced models (Upper Limit) for E.3.7.1 

 

Figure 3.33: Frequency responses of reduced models (Lower Limit) for E.3.7.2 

 

-100

-50

0

50

M
a
g
n
it

u
d
e
 (
d
B

)

Higher Order System

Proposed Reduced Model

Pade & Dominant Pole

Dominant Pole and Direct Series

Direct Truncation

Gamma-Delta Approximation

10
0

10
2

10
4

-180

0

180

360

P
h
a
s
e
 (
d
e
g
)

Bode Diagram

Frequency  (rad/s)

-200

-150

-100

-50

0

M
a
g
n
it

u
d
e
 (
d
B

)

10
0

10
1

10
2

10
3

10
4

10
5

-90

0

90

180

P
h
a
s
e
 (
d
e
g
)

Higher Order System

1st Order Reduced Model

2nd Order Reduced Model

Bode Diagram

Frequency  (rad/s)



 

Model Order Reduction of Discrete-Time Interval Systems 

 3.8. Routh Approximant 

73 

 

Figure 3.34: Frequency responses of reduced models (Upper Limit) for E.3.7.2 

Conclusions 

The proposed algorithm is an acceptable extension of model order reduction 

for discrete-time interval system based on RA yielding better and satisfactory 

results.  

3.8. Routh Approximant 

Adding to the proposed algorithms, here presented is yet another extension of 

a prevailing technique in continuous-time domain [32] to discrete-time domain. 

The existence and the prolongation, both belong to interval coefficient committee.  

Methodology 

Here considered is bilinear transformation for Routh algorithm implication 

that results in (2.15).  

nA w from the obtained nH w  (2.15) is employed to draft the entries of the 

first two rows of Routh array drafted in Table 3.40. k  where k = 1, 2,… in Table 

3.40 is of interval nature ,k k  as required for the computation of the entries 

down the table and the reduced models.  
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Table 3.40: Routh Table for ,k k  

0
1

1

a

a

0 0,a a 1 1,a a 2 2,a a 3 3,a a

1 1,a a 2 2,a a 3 3,a a ………

1
2

2

c

c

1 1,c c 2 2,c c 3 3,c c ………

2 2,c c 3 3,c c ……… ………

1
3

2

d

d

1 1,d d 2 2,d d ……… ………

2 2,d d ………

 

The entries down the third row is figured as 

For i = odd 

1 1, ,i ic c a a     i=1, 3, 5, ….                 (3.111a) 

1 1 2 2, ,d d c c
                

(3.111b) 

1 1, ,i i i id d c c               i=3, 5, ….           (3.111c) 

For i = even 

1 1 0 0 1 1, , , , ,i i i i i ic c a a a a a a a a  

           
(3.112a) 

1 1 1 1 2 2 2 2, , , , ,i i i i i id d c c c c c c c c
           

(3.112b) 

Preferred order reduced models are confronted through the numerator and 

denominator polynomials in Table 3.41. The set combination is used to derive the 

reduced order model in w-domain which later is transformed back to z-domain 

by inverse transformation.  

Example 

E.3.8.1. Consider transfer function available from [66] as 

2

3 3 2

3.25,3.35 3.5,3.65 2.8,3

5.4,5.5 1,1.1 1.5,1.6 2.1,2.15

z z
H z

z z z
             

(3.113)

Steps from the algorithm, transforms the transfer function in w-domain to (3.114) 

3 2

3 3 2

2.85,2.4 1.3,2.35 9.05, 8.9 9.55,10

3.65,4 19.8,20.45 9.15,9.8 10,10.35

w w w
H w

w w w
 

          (3.114) 
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Table 3.41: Reduced polynomials for various order 

Order Element Reduced Polynomials 

 

 

k=1 

Den. 
1 1

1 0 0

0 0

,
1,1 ,

,
A w w a a

a a
 

Num. 
1 1

1 0 0

0 0

,
,

,
B w b b

a a
 

 

 

k=2 

Den. 
1 1 2 22

2 0 0 1 1

0 0

, ,
1,1 , ,

,
A w w a a a a w

a a
 

Num. 
1 1 2 2

2 0 0 1 1

0 0

, ,
, ,

,
B w b b b b w

a a
 

 

In 

general 

Den. 
0 0 1 1

1
0 0 1 1

, ,, !
1,1

, ... ,

k kk
k

k
k k

a a a a w
A w w

a a a a w
 

Num. 
0 0 1 11 1

1
0 0 1 1

, ,, !

, ... ,
k

k
k k

b b b b w
B w

a a b b w
 

 

Routh table for obtaining the ,k k coefficients required for computation of 

the reduced denominator is constructed as in Table 3.42. 

Table 3.42: Denominator array for ,k k  

3w 10,10.35 9.15,9.8 19.8,20.45 3.65,4

2w 9.15,9.8 19.8,20.45 3.65,4

1w 9.15,9.8 15.28,16.73

0w 15.28,16.73

 

The parameters calculated from the above table are 1 1, 1.02,1.13 and 

2 2, 0.54,0.64 . Using these parameters in the numerator and 

denominator polynomial of order k = 2 extracted from Table 3.41 result the 

reduced model in z-domain as  
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2

2 2

0.14,0.24 1.01,1.44 0.98,1.37

2.03,2.42 0.9, 0.56 0.84,1.23

z z
R z

z z
   

          (3.115) 

The error computed by the proposed algorithm is made known in Table 3.43 

and is minimum making it acceptable for its proficiency when compared with the 

prevailing technique. Justification to the proposed technique is also supported by 

the tracking of step responses of the reduced and higher order systems shown in 

Figures 3.35 and 3.36 for lower and upper limit transfer functions respectively. 

Figures 3.37 and 3.38 demonstrate the frequency responses for the derived 

reduced models correspondingly. 

Table 3.43: Error for 2nd order reduced models for E.3.8.1 

Methods Error 

Lower Limit Upper Limit 

Proposed Algorithm 0.0463 0.0215 

Multipoint Pade [66] 0.0721 0.0409 

 

 

Figure 3.35: Step responses of reduced models (Lower Limit) for E.3.8.1 
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Figure 3.36: Step responses of reduced models (Upper Limit) for E.3.8.1 

 

Figure 3.37: Frequency responses of reduced models (Lower Limit) for E.3.8.1 
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Figure 3.38: Frequency responses of reduced models (Upper Limit) for E.3.8.1 

E.3.8.2. Consider another higher order transfer function from [68], [83], [90], 

[107] be 

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
              (3.116) 

The parameters calculated from the Table 3.40 are 1 1, 1.02,1.09 and 

2 2, 3.19,4.40 . 

Reduced models with the polynomials extracted from Table 3.41 for k=1, 2 

generates 

1

0.57,0.84 0.57,0.84

2.02,2.09 0.02,0.09

z
R z

z
                

(3.117)

 

2

2 2

6.10,0.05 3.61,7.47 5.51,11.67

7.25,10.55 4.45,7.66 0.44,2.85

z z
R z

z z
   

          (3.118) 

Table 3.44 confer the error computed for the first and second order models 

and is observed to be minimal demonstrating its support for the acceptance of 

the proposed algorithm. 

Figures 3.39 and 3.40 represent the step responses and Figures 3.41 and 3.42 

depict the frequency responses for the reduced models for lower and upper limits 

respectively. 
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Table 3.44: Error for 1st and 2nd order reduced models for E.3.8.2 

 

Methods 

Error 

1st Order 2nd Order 

Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Algorithm 0.2356 0.0069 0.7080 0.1414 

Pade & Dominant Poles [68] 0.1398 0.0195 0.1810 0.0741 

Dominant Pole/Direct Series [83] 0.4839 0.4134 0.3237 0.3229 

Gamma-Delta Appr. [90] 0.0157 0.0035 0.1292 0.0443 

Direct Truncation [107] 2.1491 2.7780 0.0278 0.0077 

 

 

Figure 3.39: Step responses of reduced models (Lower Limit) for E.3.8.2 
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Figure 3.40: Step responses of reduced models (Upper Limit) for E.3.8.2 

 

Figure 3.41: Frequency responses of reduced models (Lower Limit) for E.3.8.2 
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Figure 3.42: Frequency responses of reduced models (Upper Limit) for E.3.8.2 

Conclusions 

The attempt to present a promising propagation of continuous-time domain 

approximation technique to discrete-time interval systems is achieved here. 

3.9. Routh-Pade Approximation 

Algorithm discussed under this heading is a mingled form of the prevailing 

techniques that employ their individual algorithmic steps. Enlisted algorithms are 

Pade Approximation and Routh Algorithm for deriving the reduced numerator and 

denominator polynomials respectively. In this approach, the preservation of 

model stability is considered the prime focus. The algorithm is as follows;  

Methodology 

Euler forward method i.e. z=1+p results (2.13) to (2.16) and its corresponding 

Routh array as drafted in Table 3.45, where  

, , 2, 1 2, 1 2 2 1, 1 1, 1, , , ,i j i j i j i j i i i j i ja a a a a a              (3.119) 

with i=3,4,……..,n. and j=1,2,…… 
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and   
,1 ,1

1,1 1,1

,
,

,

i i

i i

i i

  where i=1,2,.....n             (3.120) 

Table 3.45: Routh array for denominator 

0 0

1,1 1,1

,

,

a a

a a
 

2 2

1,2 1,2

,

,

a a

a a
 

4 4

1,3 1,3

,

,

a a

a a
 

… 

1 1

2,1 2,1

,

,

a a

a a
 

3 3

2,2 2,2

,

,

a a

a a
 

5 5

2,3 2,3

,

,

a a

a a
 

… 

3,1 3,1,a a  3,2 3,2,a a    

4,1 4,1,a a   

…. 

  

.    

,1 ,1,n na a     

 

Denominator polynomial for transfer function with order k(<n) is constructed 

with n k th and 1n k th  rows of Table 3.45 as 

1 2

,1 1 ,1 ,2
...k k k

k n k n k n k
A p a p a p a p               (3.121) 

The numerator kB p is obtained by Pade approximation. Consider the 

required reduced model of order k be  

1
0 0 1 1 1 1

0 0 1 1

, , ... ,

, , ... ,

k
k kk

k
k k k

U U U U p U U pB p

A p V V V V p V V p
             (3.122) 

Equate (3.122) and (2.16), as in (3.123), cross multiply and compare left and 

right hand side for coefficients of similar power. The comparison of the two sides 

offer the required coefficients. 

k n

k n

B p B p

A p A p
                      (3.123a) 

1
0 0 1 1 0 0, ... , , ... ,k k

k k n n k kU U U U p A p B p V V V V p (3.123b) 

Substitution of the obtained parameters in (3.122) gives the desired order 

reduced model which on appropriate inverse transformation gives kR z . 
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Example 

E.3.9.1. Consider transfer function available from [66], [86] 

2

3 3 2

3.25,3.35 3.5,3.65 2.8,3

5.4,5.5 1,1.1 1.5,1.6 2.1,2.15

z z
H z

z z z
(3.124) 

Steps from the algorithm transforms 3H z  as follows  

2

3 3 2

3.25,3.35 10,10.35 9.55,10

5.4,5.5 17.2,17.6 19.7,20.3 10,10.35

p p
H p

p p p
(3.125) 

Its Routh array for computing the denominator is shown in Table 3.46 that 

results 2A p as  

2
2 17.2,17.6 16.4,17.24 10,10.35A p p p                  (3.126) 

For numerator the coefficients of second order reduced model are 

0 0, 9.55,10U U  and 1 1, 5.18,9.13U U which results, 2R p and its 

equivalent z-domain model 2R z as 

2 2

5.18,9.13 9.55,10

17.2,17.6 16.4,17.24 10,10.35

p
R p

p p
(3.127) 

2 2

5.18,9.13 0.42,4.82

17.2,17.6 18.8, 17.16 9.96,11.55

z
R z

z z
(3.128) 

Table 3.46: Denominator array for E.3.9.1 

3p  5.4,5.5  19.7,20.3  

2p  17.2,17.6  10,10.35  

1p  16.4,17.24   

0p  10,10.35   

 

Table 3.47, shows the error of the reduced model obtained by the proposed 

algorithm and by the prevailing techniques. Figures 3.43 and 3.44 shows the step 

response of the reduced models for lower and upper limits respectively. Figures 

3.45 and 3.46 present the frequency responses of the reduced models 

correspondingly for lower and upper limits. 
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Table 3.47: Error for 2nd order reduced models for E.3.9.1 

Methods Error 

Lower Limit Upper Limit 

Proposed Algorithm 0.0904 0.0082 

Multipoint Pade [66] 0.0721 0.0409 

Least Squares Methods [86] 1.6246x10-06 7.7560 x10-04 

 

E.3.9.2. Let transfer function from [68], [90] and its p-domain equivalent as 

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
(3.129) 

2

3 3 2

1,2 5,8 12,16

6,6 27,27.5 40.9,42 20.7,21.35

p p
H p

p p p
(3.130) 

Table 3.48: Denominator array for E.3.9.2 

3p  6,6  40.9,42  

2p  27,27.5  20.7,21.35  

1p  36.16,37.49   

0p  20.7,21.35   

By proposed algorithm, the reduced order model obtained with coefficients 

0 0, 11.63,16.50U U  and 1 1, 7.51,14.25U U is as  

2 2

7.51,14.25 10.63,15.5

27,27.5 18.84, 16.51 10.21,12.69

z
R z

z z
            

(3.131) 

Error for validation of the algorithm with the existing techniques is shown in 

Table 3.49. Figures 3.47 and 3.48 present the step response and Figures 3.49 and 

3.50 depict the frequency responses of the reduced models for lower and upper 

limits transfer functions respectively. 

Table 3.49: Error for 2nd order reduced models for E.3.9.2 

 

Methods 

Error 

Lower Limit Upper Limit 

Proposed Algorithm 0.1079 0.0342 

Pade and Dominant Pole [68] 0.1810 0.0741 

Gamma-Delta Appr. [90] 0.1292 0.0443 
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Figure 3.43: Step responses of reduced models (Lower Limit) for E.3.9.1 

 

Figure 3.44: Step responses of reduced models (Upper Limit) for E.3.9.1 
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Figure 3.45: Frequency responses of reduced models (Lower Limit) for E.3.9.1 

 

Figure 3.46: Frequency responses of reduced models (Upper Limit) for E.3.9.1 
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Figure 3.47: Step responses of reduced models (Lower Limit) for E.3.9.2 

  

Figure 3.48: Step responses of reduced models (Upper Limit) for E.3.9.2 
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Figure 3.49: Frequency responses of reduced models (Lower Limit) for E.3.9.2 

 

Figure 3.50: Frequency responses of reduced models (Upper Limit) for E.3.9.2 
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Conclusions 

An existing method for order reduction of continuous-time interval systems is 

extended to discrete-time interval systems. Mixed approach where denominator is 

obtained by direct truncation of Routh table and numerator by Pade 

approximation is exemplified here. 

3.10. Amalgamated Approximation 

Under this heading, three techniques are revisited which when interlaced 

among themselves result two varied approximation techniques. The prevailing 

techniques utilized here are Routh Approximation, Direct Truncation and Pade 

Approximation. The first approximation is used to derive the reduced denominator 

and the latter two are used for numerator derivation. 

Methodology 

Bilinear transformation considered here, results (2.13) as (2.15). Consider the 

reciprocal form of the above denominator polynomial nA w to obtain the reduced 

denominator polynomial represented as ˆ
nA w ; 

1
0 0 1 1

1 1ˆ , , ... ,n n
n n n nA w A a a w a a w a a

w w
            (3.132) 

Use ˆ
nA w to draft the first two rows of the Routh array shown in Table 3.50.  

Table 3.50: Routh array for denominator 

0 0

1,1 1,1

,

,

a a

a a
 

2 2

1,2 1,2

,

,

a a

a a
 

4 4

1,3 1,3

,

,

a a

a a
 

.. 

1 1

2,1 2,1

,

,

a a

a a
 

3 3

2,2 2,2

,

,

a a

a a
 

5 5

2,3 2,3

,

,

a a

a a
 

.. 

3,1 3,1,a a  3,2 3,2,a a    

….    

,1 ,1,n na a     

 

Entries down the third row in the table is computed by 

, , 2, 1 2, 1 2 2 1, 1 1, 1, , , ,i j i j i j i j i i i j i ja a a a a a              (3.133) 

where   i=3,4,……..,n and j=1,2,…… 
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with   
,1 ,1

1,1 1,1

,
,

,

i i

i i

i i

          i=1,2,…k,.....n                   (3.134) 

provided 1,1 1,1, 0i i    

The reduced denominator, ˆ
kA w is obtained according to (3.135) as stated 

for non-interval system [24] 

1 2
ˆ ˆ ˆ,k k k k kA w wA w A w                 (3.135) 

with     1
ˆ 1A w ,             0

ˆ 1A w  

For instance, if k=1, 2 then denominator polynomial is  

 1 1 1
ˆ , 1,1A w w                     (3.136) 

and     2
2 1 1 2 2 2 2

ˆ , , , 1,1A w w w             (3.137) 

The resulting ˆ
kA w is reciprocated back to kA w  which on inverse 

transformation give the required kA z . 

The numerator kB w  is computed by implicating two algorithms discussed 

below; 

Algorithm 1: Direct Truncation 

Direct Truncation [107] is hired for obtaining the reduced numerator 

polynomial declared as  

1 2
1 1 2 2 0 0, , ... ,k k

k k k k kN z n n z n n z n n              (3.138) 

Algorithm 2: Pade Approximation 

Another prevailing technique; Pade approximation used for obtaining the 

numerator polynomial is illustrated here. Once the denominator kA w exist, 

numerator kB w  is obtained by matching first t time moments and l Markov 

parameters, such that t l k .  

Assume the reduced model of order k be  

1
0 0 1 1 1 1

0 0 1 1

, , ... ,

, , ... ,

k
k kk

k
k k k

U U U U w U U wB w

A w V V V V w V V w
              (3.139) 

 

Equate (3.139) and (2.15), cross multiply and compare left & right hand side 

for similar coefficients and compute the desired coefficients.  
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k n

k n

B w B w

A w A w
                      (3.140a) 

1
0 0 1 1 0 0, ... , , ... ,k k

k k n n k kU U U U w A w B w V V V V w

(3.140b) 

Place the obtained coefficient in (3.139) and apply inverse transformation to 

obtain kR z . 

Example 

E.3.10.1. Consider the higher order system available from [68], [83], [90], [107], 

[108] be 

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
H z

z z z
             (3.141) 

By the proposed algorithm, its w-domain representation is 

3 2

3 3 2

9, 5 17,27 34, 24 12,16

0.55,1.2 5.9,6.65 19.45,20.2 20.7,21.35

w w w
H w

w w w
         (3.142) 

The denominator polynomial for drafting the Routh array is (3.143) 

3 2
3 3

1 1ˆ 20.7,21.35 19.45,20.2 5.9,6.65 0.55,1.2A w A w w w
w w

 

               (3.143) 

From 3Â w , the Routh array is outlined in Table 3.51; 

Table 3.51: Denominator array for E.3.10.1 

3w  20.70,21.35  5.90,6.65  

2w  19.45,20.20  0.55,1.20  

1w  4.58,6.08   

0w  0.55,1.20   

 

Required parameters procured from the above table are  

1 1, 1.02,1.09 , 2 , 3.19,4.40  

The second order reduced denominator polynomial by (3.137) result in   

2
2

ˆ 3.27,4.83 3.19,4.40 1,1A w w w                 (3.144) 

On appropriate reciprocal and inverse transformation gives the reduced 

denominator as   
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2
2 7.46,10.24 4.54,7.66 0.13,2.63A z z z              (3.145) 

Numerators by the two varied algorithms resulting to the overall reduced 

model are; 

Algorithm 1 

Direct truncation, result the reduced model as 

2 2

3,4 8,10

7.46,10.23 4.54,7.66 0.12,2.63

z
R z

z z
             (3.146) 

Algorithm 2 

Pade approximation through (3.140) provide 0 0, 1.83,3.73U U and

1 1, 9.73, 2.05U U  which result, 2B w  as 

2 9.7351, 2.0504 1.8389,3.7368B w w               (3.147) 

The overall reduced model after inverse transformation as  

2

2 2

7.89,1.68 3.67,7.47 3.88,13.47

7.46,10.23 4.54,7.66 0.12,2.63

z z
R z

z z
             (3.148) 

Table 3.52 displays the results obtained by the proposed algorithms and the 

existing ones. Figures 3.51 and 3.52 demonstrate the step response and Figures 

3.53 and 3.54 give the frequency responses of reduced models for lower and upper 

limits respectively. 

Table 3.52: Error for 1st and 2nd order reduced models for E.3.10.1 

Methods Error 

Lower Limit Upper Limit 

Proposed Algorithm 1 0.0553 0.0033 

Proposed Algorithm 2 1.1265 0.2183 

Pade and Dominant Pole [68] 0.1810 0.0741 

Dominant Pole and Direct Series [83] 0.3237 0.3229 

Gamma-Delta Approximation [90] 0.0278 0.0077 

Direct-Truncation [107] 0.1292 0.0443 

Routh-Pade Approximation [108] 0.1079 0.0342 
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 Figure 3.51: Step responses of reduced models (Lower Limit) for E.3.10.1 

  

Figure 3.52: Step responses of reduced models (Upper Limit) for E.3.10.1 
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Figure 3.53: Frequency responses of reduced models (Lower Limit) for E.3.10.1 

 

Figure 3.54: Frequency responses of reduced models (Upper Limit) for E.3.10.1 

E.3.10.2. Consider a real-time digital control system  

-60

-40

-20

0

20

40

M
a
g
n
it

u
d
e
 (
d
B

)

10
0

10
1

10
2

10
3

10
4

-180

0

180

360

P
h
a
s
e
 (
d
e
g
)

Higher Order System

Proposed Algorithm 1

Proposed Algorithm 2

Pade and Dominant Pole

Dominant Pole and Direct Series

Direct-Truncation

Gamma-Delta Approximation

Routh-Pade Approximation

Bode Diagram

Frequency  (rad/s)

-100

-50

0

50

100

M
a
g
n
it

u
d
e
 (
d
B

)

10
0

10
2

10
4

-360

0

360

P
h
a
s
e
 (
d
e
g
)

Higher Order System

Proposed Algorithm 1

Proposed Algorithm 2

Pade and Dominant Pole

Dominant Pole and Direct Series

Direct-Truncation

Gamma-Delta Approximation

Routh-Pade Approximation

Bode Diagram

Frequency  (rad/s)



 

Model Order Reduction of Discrete-Time Interval Systems 

 3.10. Amalgamated Approximation 

95 

7 6 5

4 3 2

8 8 7 6

1.6484,1.7156 1.0937,1.1383 0.2142, 0.2058

0.1490,0.1550 0.5263, 0.5057 0.2672, 0.2568

0.0431,0.0449 0.0061, 0.0059

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

0.2058,0.2142

z z z

z z z

z
H z

z z z

z5 4 3

2

0.1550, 0.1490 0.5057,0.5263

0.2568,0.3672 0.0449, 0.0431 0.0059,0.0061

z z

z z

              (3.149) 

By the algorithms, the reduced models are obtained as  

Algorithm 1 

1

0.006, 0.005

1.11,1.13 0.88, 0.86
R z

z
               (3.150) 

2 2

0.04,0.04 0.006, 0.005

1.38,1.45 1.91, 1.89 0.64,0.71

z
R z

z z
             (3.151) 

Algorithm 2 

1

0.01,0.01 0.01,0.01

1.11,1.13 0.88, 0.86

z
R z

z
                        (3.152) 

2

2 2

0.02,0.05 0.007,0.01 0.04, 0.01

1.38,1.45 1.91, 1.89 0.64,0.71

z z
R z

z z
                      (3.153) 

Table 3.53, present the error computed for the obtained reduced models. 

Figures 3.55 and 3.56 present the step responses and Figures 3.57 and 3.58 

depict the frequency responses of reduced models for lower and upper limits 

respectively. 

Table 3.53: Error for 1st and 2nd order reduced models for E.3.10.2 

 

Methods 

Error 

1st Order 2nd Order 

 Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Algorithm 1 0.0057 0.0056 0.0017 0.0018 

Proposed Algorithm 2 0.0037 0.0022 0.0011 0.0015 
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Figure 3.55: Step responses of reduced models (Lower Limit) for E.3.10.2 

  

Figure 3.56: Step responses of reduced models (Upper Limit) for E.3.10.2 
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Figure 3.57: Frequency responses of reduced models (Lower Limit) for E.3.10.2 

 

Figure 3.58: Frequency responses of reduced models (Upper Limit) for E.3.10.2 
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sum is observed (For example: In Table 3.52; lower limit of Proposed Algorithm 1 is 

higher than [90]; Upper limit of Proposed Algorithm 2 is higher than [68], [90], 

[107]). Similar limitation is observed for E.3.10.2. This limitation is considered 

with a confrontation that these error differences are very minute and the 

algorithms proposed are computationally simple and easy relative to the 

prevailing ones. Negligence of this limitation is also strengthened, when these 

proposed algorithms are applied to the real-time systems and error sum obtained 

is minimal as desired. 

Conclusions 

Two new techniques for order reduction of discrete-time interval system are 

explained successfully. Though the considered methodologies exist, yet, proofs 

themselves to be new as per the elaboration here. The method to find the reduced 

denominator polynomial is fresh. From the two algorithms for numerator 

polynomial derivation, Algorithm 1 uses Direct Truncation which earlier exists for 

discrete-time interval system but here it’s used in mixed form. During the course 

of computing the reduced model a limitation derived is also discussed.  

3.4. Summary 

This chapter conclude with the establishment of reduction methodologies 

based on Routh Approximation Approach for discrete-time interval systems. 

Altogether, ten algorithms are elaborated in this chapter.  

Next chapter will deal with the algorithms based on Assorted Approach 

grounded on various procedural steps for computation of reduced models. 

 

 

 

 

 

 

 


