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Chapter 2 

Preliminaries 

2.1. Preamble 

This chapter is an insight to the desired supplements for the acquaintance 

towards the development of proposed algorithms. The chapter fragments into 

seven sections demonstrating their significance for the proposals ahead in the 

write-up. Commencing with a brief discussion on MOR techniques is followed by 

the definition of uncertain or interval systems. A short discussion about the 

involved arithmetic rules for mathematical computation is also available. 

Performance analysis engaged to validate the algorithms is then made known 

proceeded by the stability check methodology applied over interval systems. 

Towards the end of the chapter, illustrated are the essential materials like the 

problem statement and the desired transformation. 

2.2. Model Order Reduction 

Da Vinci mentioned, "Simplicity is the Ultimate Sophistication." Later Einstein 

conceived "Everything must be made as simple as Possible, But Not Simpler." The 

statements are worth stated but practically not commendable. Every individual 

believed the importance of being simple, but when it comes to mathematical 

modeling, the problem becomes troublesome. The primary reason for this is the 

decision of the level of desired details to be incorporated or neglected in the 

numerical representation of a given scenario that does not pose much of the effect 

on the capability of the system. Dealing with such question is tough!!! The answer 

to this issue is the development of MOR algorithms that simplifies the complexity 

of the systems to an acceptable limit. At present, MOR is well known and 

established area of research posturing significant algorithms. Few of the basic 

algorithms among them are Pade and Routh approximation, moment matching 

technique, aggregation method and many others.  

MOR is a division of control systems theory, in which the complexity of large-

scale dynamical systems is reduced, without disturbing the system's physical 

meaning. There is always an attempt to preserve the prime characteristics of the 

system or their input-output behavior. Reduced models are the mirror image of 

the large-scale dynamical systems which after derivation are efficiently engaged 
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for efficient computational simulations, designing and other purposes. Models of 

dynamical systems are useful primarily for two reasons: (i) simulation and (ii) 

control. Fewer of the desirable characteristics of MOR techniques are listed below; 

a) Accuracy: The algorithm should be able to extract the minimal error 

computation between the higher order system and the reduced models.  

b) User independence: The algorithm is desired to offer minimal user 

intervention for developing the reduced models. 

c) Properties Preservation: It should retain, not much, but fewer of the 

characteristics of the higher order system such as transient response, stability. 

d) Computational efficiency: It should be computationally efficient i.e. the cost 

of implementation of the reduced model should justify the higher order system 

realization. 

2.3. Uncertain or Interval System 

Control system theory and their analysis ground on the concept of linear and 

non-interval systems. Recently, the research community encountered an unusual 

category of problem, i.e. uncertainty in the system. The behavior of dynamical 

systems is understood and recognized through the knowledge and technology 

that primarily rely on the link between data and mathematical models. But data 

are frequently subjected to uncertainty and when taken into account result in the 

system parameters and even their structure to be of ambiguous nature. Below is 

a brief discussion of such structure and their importance; 

Uncertainty in a broad sense is the lack of exact knowledge, regardless of the 

cause for its existence. Precisely, a thorough study of any environmental, 

management or technical system discovers the various types of uncertainties 

lying within. Uncertainty classifies into two categories based on their 

fundamental nature; (a) Aleatoric uncertainties and (b) Epistemic uncertainties. 

Former is the representative of unknowns that vary each time when the same 

experiment is performed i.e. inherent randomness and natural variability. And 

latter is due to things known in principle but not in practice. It is the result of 

imperfect knowledge, and scientific uncertainty, arising from language issues. 

The first is usually irreducible, whereas the latter can be quantified and reduced. 

These uncertainties when considered for deriving mathematical 

representation offer the system in their best approximation. Uncertainty is not 

only due to the lack of the system knowledge but often being the subject to 
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perturbations that change those dynamics over time. In physical systems, these 

uncertainties are the consequence of un-modeled dynamics, sensor noises, 

disturbances, standard errors, parameter variations, actuator constraints and 

many others. The presence of these changes alters the coefficient of the transfer 

function from deterministic to uncertain parameters. Thus, systems having 

coefficients of unknown nature are known as uncertain systems. And when these 

systems are bounded by a finite range or boundary is designated as Interval 

Systems. In literature, both these interval and uncertain systems are used as a 

choice by the researcher to assign a name. Here, in particular, they cited as 

Interval Systems. The presence of uncertainties in the systems results in foster 

inconvenience for the systems simulation, design and implementation. Few 

examples of practical system incurring changes in their mathematical 

representations are;  

Cold rolling mill [91] with transfer functions of the steering type and the 

displacement type guides are 
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                  (2.1)
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Vehicle Suspension Systems [92] 
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Oblique Wing Aircraft [93]  

54,74 90,166

4 3 22.8,4.6 50.4,80.8 30.1,33.9 0.1,0.1

s
H s

s s s s

        (2.4) 

Electric Motors [94]  

350 *10

3 20.0000096,0.0000336 0.0012,0.0028 0.002025,0.002475
H s

s s s

              (2.5)  

Additionally, these uncertainties significantly affect the stability and 

performance of the system. Since the uncertainty in the system cannot be ignored 

or neglected, and also no competent method broke for cutting down the 
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uncertainty descriptions, the investigation proceeded towards the order reduction 

of such systems which is the prime objective of this thesis. 

Literature in the earlier chapter reported about the availability of less number 

of techniques for order reduction of such regimes. And among them, only a few 

ensure the stability of the models. Literature also showcases the applicability of 

most order reduction techniques for non-interval systems to interval systems. 

Additionally, for an exception when the interval arithmetic operation results in 

unexpected results, a little modification in the algorithms call for a better result. 

From the literature, it is also evident that as compared to the algorithms available 

for continuous-time domain systems, the algorithms for discrete-time domain 

systems are very less, directing the work presented here. The contributions in 

this work intend towards model order reduction of discrete-time interval systems. 

The proposed algorithms guarantee the preservation of fewer of the dynamic 

characteristics of the higher order system to lower order models.  

2.4. Interval Arithmetic 

Mathematics is involved in each and every part of the existence of nature to 

mathematical modeling calling for a set of arithmetic rules. Similar is the case 

with interval systems which desire for an interval arithmetic to deal with their 

computation. Interval Arithmetic came into existence in the late fifties but got its 

first appearance in mid-sixties. A brief history about this summons below;  

The idea of Interval Computation pioneered in the Ph.D. Dissertation by R. E. 

Moore at Stanford University, the USA in 1962 [95]. He presented the first 

application in 1959, but its first monograph appeared in 1966 [96]. Interval 

computation did not survive much in the US and moved to Europe, mainly to 

Germany. Reason gathered for this mobility is their less cost-conscious and less 

worried about the inaccuracy of the sensors. They confronted “if a sensor is not 

sufficient, spend some more money and buy a better one.” Scientists being the 

primary users of this technique did not accept this, as they were working at the 

cutting edge of accuracy and were engaged with the best possible sensors to 

measure micro-quantities. Moving to Germany, Interval Computation got its 

importance as it is a part of their standard qualifying exam for different areas of 

Numerical Mathematics and it also offered the first specialized journal for it. 

Germany also hosts regular conferences for Interval Computations till date.  
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In 1991, USA came forward with an outburst of activity related to Interval 

Computations as they launched a new international journal Interval Computation 

which is issued under the new title Reliable Computing from 1995. In continuation 

to this, they also hosted various international conferences and workshops. In 

recent activities, Interval Computations are welcomed worldwide through peer-

reviewed journals, conferences, workshops, short-term courses and many more 

activities. Some of the good literature on interval arithmetic are made available at 

http://www.cs.utep.edu/interval-comp/. Recently, Society for Industrial and 

Applied Mathematics published a book on Interval Arithmetic [97].   

Since, the proposed methodologies in the thesis deal with interval systems, 

their mathematical computation demand interval arithmetic which is very similar 

to the basic arithmetic rules in mathematics. Only difference stated is the 

parameters in the interval arithmetic are of uncertain nature as illustrated below; 

Let [a, b] and [c, d] be two intervals parameters where a, c are minimum and 

b, d are maximum entries in the specific intervals. Analogous, to the arithmetic 

rules of definite numerical, interval arithmetic exist as, 

 Addition:   , , ,a b c d a c b d    (2.6) 

 Subtraction: , , ,a b c d a d b c       (2.7)

 Multiplication:     , , , , , , , , ,a b c d Min ac ad bc bd Max ac ad bc bd        (2.8) 

 Division:              
, 1 1

, ,
,

a b
a b

c d d c
    (2.9)                           

provided     , [0]c d  

2.5. Performance Analysis  

The implication of the different proposed reduction methodologies to obtain 

the reduced order models is incomplete until the models are validated. The 

analysis of the model's performance is compared with the higher order system. 

When an appreciable amount of validation is performed, the methodology followed 

by the obtained models is significantly accepted, theoretically and practically. 

Below discussed are the two principal tools employed for the process of validation. 

2.5.1. Summation of Error Square (SES) 

A performance index of the system is a quantitative measure of its enactment 

subjected to parameter variations. It is dependent on the design objective of the 
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scheme, which in most of the cases is related to systems’ time response. In 

conventional control systems, the output regulates in a way that its response 

follows a constant reference input. For instance, consider the reference input and 

the output response be denoted by r(t) and c(t) respectively. Then, the measure of 

regulation is stated as the error signal e(t) = r(t) - c(t). An appropriate performance 

index is the cumulative effect of the error function e(t), often represented by the 

integral of the square of the error signal (ISE).  

Since the thesis deal with discrete-time systems, the performance index is 

altered from integral to summation of the error squares defined as the weighted 

error sum over a fixed interval of time. It determines the error between the 

transient responses of the higher order system, and the lower order model, 

expressed as; 

2

0

k

k

J y k y k           (2.10) 

where y k  and ky k  are the unit step responses of higher order system nH z  

and reduced order model kR z  respectively. 

The minimum ‘J’ guarantees an approximate model of the higher order 

system. Computation of ‘J’ for interval systems is performed by computing the 

transfer function with i) only lower limits and ii) only upper limits. The assessment 

of interval system is uneasy in its raw form; this sets the motive for considering 

it into two for their better analysis providing an in-depth evaluation via their 

boundaries. Thus, the individual ‘J’ for the two transfer functions are used for 

comparison with the general techniques under the error columns referred as a 

Lower Limit and Upper Limit, shown in error tables for examples in the chapters 

ahead.  

2.5.2. Step Response 

Another very familiar and straightforward tool for validation of the obtained 

reduced models is Step Response. It is used to track the response of the reduced 

order model comparative to their higher order systems.   

 

Throughout the discussion of the methodologies in the thesis, either of these 

two tools is employed to perform the performance analysis. 
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2.6. Stability 

Earlier section quantified the outburst of interval systems in the sixties, but 

their analysis grabbed recognition after their theoretical existence in the nineties. 

Around the 1980s, researchers around the world knew interval system but did 

not conceive the stability analysis. The only reason for the lack of interest in such 

systems is the unavailability of the theories for the purpose of analyzing and 

designing of control systems with uncertain parameters. Grabbing rigorous 

interest and attention from around the world, intended Kharitonov to introduce 

Kharitonov’s theorem [98] in 1979 for analysis of such systems. This publication 

was unknown to a major part of the researchers for many years as it is only 

available in Russian literature. Later, its proof and highly acceptable literature 

were available in a much-simplified version by Barmish [99]. Below discussed is 

a brief discussion about Kharitonov theorem to perform the stability test of 

interval systems.  

It is an extension of the standard Routh Stability Criterion studied in linear 

control systems to interval polynomials. It states that an interval polynomial 

family, having an infinite number of members, is Hurwitz stable if and only if a 

finite small subset of four polynomials known as the Kharitonov polynomials are 

Hurwitz stable. Below is its illustration; 

Consider the set of real polynomials of degree n of the form 

2 3 4
0 1 2 3 4 ... n

ns s s s s s         (2.11)
 

where the coefficients lie within given ranges 

0 0 0,x y , 1 1 1,x y , ….. ,n n nx y . 

Then, the polynomial is Hurwitz if and only if the following four extreme 

polynomials are Hurwitz i.e.  

1 2 3 4 5 6
0 1 2 3 4 5 6

2 2 3 4 5 6
0 1 2 3 4 5 6

3 2 3 4 5 6
0 1 2 3 4 5 6

4 2 3 4 5 6
0 1 2 3 4 5 6

...

...

...

...

K s x x s y s y s x s x s y s

K s x y s y s x s x s y s y s

K s y x s x s y s y s x s x s

K s y y s x s x s y s y s x s

      (2.12) 

Once the above four polynomials formulate, their stability check via the 

conventional Routh Stability algorithm is performed. Thus, an interval family of 

polynomials s is robustly stable if, and only if, the Kharitonov polynomials are 

stable. This Kharitonov polynomial and the stability theorem holds true for 

discrete-time systems also [100], [101].  
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In recent times, a tremendous work on the Kharitonov theorem for their 

simplification is reported. For the same, a complete concept and developments of 

the generalized Kharitonov’s theorem are elaborated in the book by Bhattacharya 

et. al. [102]. 

Frequency response plot depicts the pictorial representation of stability check 

for the examples in the chapters ahead. 

2.7. Problem Statement 

The discourse of the problem statement states the mathematical resemblance 

of the higher order system and the reduced order model. 

Let the transfer function of a higher order interval systems of order n be: 

1 2
1 1 2 2 0 0

1
1 1 0 0

, , .... ,

, , ..... ,

n n
n n n nn

n n n
n n n n n

N N z N N z N NN z
H z

D z D D z D D z D D
    (2.13) 

After the engagement of the proposed methodologies, the transfer function of 

the reduced model of order k<n is 

1 2
1 1 2 2 0 0

1
1 1 0 0

, , ..... ,

, , ..... ,

k k
k k k kk

k k k
k k k k k

n n z n n z n nN z
R z

D z d d z d d z d d
    (2.14)          

2.8. Desired Discrete-Transformation 

The thesis is devoted to the discrete-time domain which is gaining popularity 

in today’s world. This trend is the outcome of the emergence of low-cost digital 

computer and microprocessor at user end presenting the simplicity for controlling 

and designing of the physical systems. They pose various advantages over analog 

control regarding reliability, flexibility, cost, performance, etc. and their handling 

at ease makes them highly acceptable to study and analyze systems. The majority 

of the physical systems are available in the continuous-time domain, and fewer 

are in the discrete-time domain. Study of such systems demands a proper 

discretization making the system convenient and easily accessible.  

Discretization is an important data processing task and includes many 

advantages as; it is less prone to variance in estimation from small fragmented 

data; the amount of data under consideration reduces as redundant data can be 

recognized and neglected; provides better performance for the rule extraction. 

There are numerous ways of transformation available from [103], [104]. But well-
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known and easily accessible are i) Euler’s Forward differentiation method, ii) 

Euler’s Backward differentiation method, iii) Zero Order Hold method, iv) Tustin’s 

method with frequency pre-wrapping or Bilinear transformation, and v) Matched 

Pole-Zero mapping. All these conversions fall under frequency-domain. Time-

domain transformations are impulse-invariance and step-invariance methods. 

Each of the transformations owes their practical and theoretical importance with 

differences among each other, which when studied would be lengthy and 

exhaustive. At par, their individual study is out of scope for this thesis.  

From the literature available, transformation techniques used widely for either 

discrete-time non-interval or interval coefficient systems are namely Tustin or 

bilinear or trapezoidal method and Euler’s Forward differentiation method. These 

two approaches are elaborated below for their better understanding [105]. Let 

Figure 2.1 depict their integral approximations. 

 

 

(a) Forward Difference                                    (b) Trapezoidal Approximation 

Figure 2.1: Different types of integral approximations 

2.8.1 Tustin or Bilinear Transformation (w-domain) 

In z-plane, the frequency appears as j tz e , and its response loses the 

simplicity of logarithmic plots. It is to be noted that the z-transformation maps 

the original and complementary strips of the left of the s-plane into the unit circle 

in the z-plane. Thus conventional frequency response methods, do not apply to 

the z-plane. To overcome this difficulty, the pulse transfer function in the z-plane 

transforms to w-plane. The w-transformation states 1 1
2 2

T T
z w w where 

T is the sampling period. The inverse transformation is
2 1

1

z
w

T z
. 

Through the z-transformation and the w-transformation, the original strip of 

the left half of the s-plane is first mapped inside of the unit circle in the z-plane 

and then allocated to the entire left half of the w-plane. The origin in the z-plane 

maps to the point 2w T in the w-plane. 
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As s varies from 0
2

sw
j  along  axis, z ranges from 1 to -1 along the unit 

circle in z-plane, and w ranges f w-

plane. The difference between the s-plane and w-plane is that the frequency range 

1 1

2 2
s s  in the s-plane maps to the field v in the w-plane, where 

v is the fictitious frequency on the w-plane. Thus, there is a compression of the 

frequency scale. Although the w-plane resembles the s-plane geometrically, the 

frequency axis in the w-plane distorts. 

2.8.2 Forward Difference Transformation (p-domain) 

Tustin transformation poses fewer difficulties in its application to filter design, 

thus calling for matched z-transformation where ptz e . The Forward Difference 

conversion is successfully implemented and used in digital control systems. It’s 

a simpler version where 1z p and prevail by employing forward Euler rule to 

the matched z-transform equality and retaining the first two terms in the 

resultant expansion.  Such transformations are of particular significance in the 

design of audio and telephone networks. 

Regarding stability transformation from z-to-w or p-domain can be better 

understood by the figure below. By using forward difference approximation, the 

stability region left half plane is mapped to the half-plane to the left of 1 on the 

complex z-plane. Thus, with forward difference approximation, it is possible that 

an unstable continuous-time controller will approximate a stable discrete-time 

controller. 

Figure 2.2, maps stability region Re 0s  for the two approximation methods 

between s-plane and z-plane. 

 

 

 

 

 

(a) Forward Difference                           (b) Trapezoidal Approximation 

Figure 2.2: Mapping of the stability region between the s-plane and the z-plane 

The bilinear transformation (trapezoidal or Tustin’s approximation) maps the 

left half s-plane into the unit disc. Hence, stable discrete (continuous) controllers 
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approximated by stable continuous (discrete) controllers, and unstable 

continuous (discrete) controllers map to unstable discrete (continuous) 

controllers. In practice, the Tustin’s approximation (bilinear transformation) is 

the approximation of choice for converting continuous-time (discrete) controllers 

to discrete-time (continuous) controllers. 

The two different transformation of the higher order system results in the 

below depicted transfer function which later on is used throughout the thesis for 

the development of algorithms.  

In w-domain 

1
1 1 0 0

1
1 1 0 0

, , .... ,

, , ..... ,

n n
n n n nn

n n n
n n n n n

b b w b b w b bB w
H w

A w a a w a a w a a
                    (2.15) 

In p-domain 

1 2
1 1 2 2 0 0

1
1 1 0 0

, , .... ,

, , ..... ,

n n
n n n nn

n n n
n n n n n

b b p b b p b bB p
H p

A p a a p a a p a a
     (2.16)

 

In spite of the success of the extension of continuous-time system reduction 

methods to discrete-time systems using bilinear or similar transformation, there 

remain two disadvantages. First, due to the nature of bilinear transformation, the 

initial value of a step response of the reduced model may not be zero, in spite of 

the zero initial condition of the original step response. Second, most of the above-

mentioned reduction techniques are either in the frequency domain or in the time 

domain, and they are designed to secure a proper fitting in their respective 

domain. Thus, a reduced model may be satisfactory in one domain, but 

unsatisfactory in another domain. The second disadvantage circumvents by an 

attempt to assess between two transformation techniques for their implication to 

order reduction in the later chapter of the thesis. 

2.9. Summary 

The above accumulated preliminaries direct towards the Model Order 

Reduction of Discrete-Time Interval Systems. The chapters ahead elaborate the 

different algorithms under diverse categories. The flow chart in Figure 2.3 

illustrates the roadmap for the development of reduction methodologies with the 

various decisions at few instances. 
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Figure 2.3: Flow chart for the development of reduction methodologies 
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