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Chapter 1 

Introduction 

1.1 Preamble 

Daily evolution in today’s world is experiencing a tremendous growth on every 

aspect ranging from a small module to large system. Their study calls for an 

appropriate mathematical representation formulated by system identification. 

The overall derivation results in a vigorous illustration involving a large number 

of differential and difference equations. These derived systems are often too 

massive and troublesome for analysis making them computationally inconvenient 

for design, simulation, and implementation. Significantly, these problems 

demand an algorithms or methodologies to cut down the order of the structure to 

a user-friendly approximate model for their exhaustive investigation. As a 

solution to this issue emerged the practice of deriving an approximate model 

representing the higher order system. The outgrowth aims to preserve fewer of 

the critical characteristics of the system such as stability, transient and steady 

state response, etc. The exercise is known as Model Order Reduction (MOR) which 

till date is under thorough research. The requirement primarily considers the 

computational simplicity, accuracy, and storage capabilities. Nevertheless, the 

reduced models are assumed to be a replica of higher order systems, which when 

substituted in place of the original complex systems makes them simple for either 

study or analysis or simulation or control. MOR algorithms showcased 

advancement from their birth to continuous/discrete time non-interval systems 

to the present day’s available continuous/discrete time interval systems. In 

continuation, the discussion ahead in the thesis is about the Model Order 

Reduction of Discrete-Time Interval Systems. 

1.2. Motivation 

Mathematical representations of dynamical systems incurred via system 

identification and modeling result in the complexity of their study and analysis. 

Additionally, the excessive demand for accurate analysis of the system tends to 

derive a higher order structure making their investigation even more troublesome. 

The claim inclines the motivation towards Model Order Reduction, with an aim to 

produce a small dimension approximate with the same response or dynamic 
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characteristics as of the original system. Small size models tend to have less 

storage and minimum computation time. Few of the aspirations for the MOR are 

i) Minimum error estimate. 

ii) Retaining dynamic characteristics as stability and transient response. 

iii) Being computationally straightforward and efficient. 

These days the demand of thorough and rigorous sketch of a dynamic system 

contributes to an outburst of the uncertainties available within the system. These 

changes resulting from the un-modeled dynamics, sensor noises, disturbances, 

standard errors, parameter variations, actuator constraints and many others are 

vital to gather for better understanding about the system. Their encounter results 

in the precise structure of higher order system of uncertain nature making their 

study troublesome. Since the uncertainty in the system cannot be overlooked, the 

research directed towards the order reduction of such establishments, which is 

stated to be the key objective of the thesis.  

The mathematical representation of dynamic systems matured from non-

interval systems to present date interval systems. Thus, the arena of MOR 

enhanced from non-interval to interval systems. Literature in the next section 

reports the available reduction methodologies for interval systems. Here, a 

researcher can examine, the various algorithms accessible for continuous-time 

interval systems and very few for discrete-time interval systems. The availability 

of fewer algorithms for discrete-time interval systems seized to be a possible 

domain about the prime motivation for the origin of this thesis work through the 

development of algorithms for Model Order Reduction of Discrete-Time Interval 

Systems.  

1.3. A Short Account of Order Reduction Techniques  

This section reports a summary of the available reduction methodologies from 

its initial work for the non-interval system to interval systems till date. As it's 

hard to list the full available literature, here mentioned are only a few articles that 

pose significant role in the advancement of the methodologies developed and 

relevant to present work. The literature below showcases the algorithms under 

continuous-time and discrete-time interval domains.  

The outburst of MOR technique in the late sixties through the critical 

discussion in [1] fulfilled the demand for simplified model of a complex system. It 

illustrated the importance of study and analysis through an example of the 
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practical available chemical reactor. The eruption guided other researchers to 

work on different formulations of MOR algorithms. The arena for MOR techniques 

initiated from non-interval system both in continuous-time and discrete-time 

domain advanced to present day interval system. Commencing with the 

algorithms in non-interval systems include remarkable methods like Pade 

Approximation, Aggregation Method, Routh Approximation (RA) and many others. 

Fewer of the review-cum-survey composition for MOR algorithms include Pade 

approximation and continued fractions [2], aggregation method [3], balanced 

truncation [4], [5], singular value decomposition [6], proper generalized 

decomposition [7]. Other surveys include approximation of the typical 

characteristics of the high-order systems as impulse or step response, time 

moments, transfer functions and others [8], [9]. Literature also present the 

technique that considers the asymptotic waveform evaluation based on Galerkin 

and multipoint Galerkin asymptotic waveform evaluation and matrix-Pade via 

Lanczos [10]. A technique based on frequency domain identification method using 

the nonlinear least square method and subspace-based identification method [11] 

is also available. Among the reduction methodologies, over the years of growing 

interest for the order reduction, RA grabbed a significant attention from the 

researchers. The reason for the noteworthy acceptability is its computational 

simplicity, ease of access and the assurance of retaining the reduced model 

stability [12]. A book [13] presenting a critical review of reduction algorithms is 

also available. Few other survey reports are [14], [15]. Above all, comparison 

among various methods for obtaining reduced-order models for large-scale 

systems grounded on their applicability to diverse practical available systems is 

available in [16]–[20]. The above offered exhaustive survey report for the non-

interval system is not of much concern regarding the work in the thesis.  

The focused topic of interest is the order reduction of interval system. 

Methodologies available in the literature for such systems are classified under 

continuous-time and discrete-time domains. Again, the former falls out of the 

realm of the thesis, but a glimpse of major and significant acceptable algorithms 

is reported here. Later sub-section submits the topic of interest, the discrete-time 

interval system, elaborated at par, since its dawn. The discussion authorizes an 

arena for the development of order reduction methodologies for Discrete-time 

Interval Systems, illustrated in the thesis. 
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1.3.1. Continuous-time Interval Systems 

Execution of higher order interval systems to their lower approximate 

pioneered with the work of Bandyopadhyay et. al. in [21]. They proposed the 

direct extension of Routh-Pade from the non-interval system [22] to interval 

systems. Many other reduction methodologies witnessed their direct extensions 

from non-interval systems to interval systems. One such extension is noticed in 

[23] - -interval 

systems in [24]. Similarly, in [25], the calculation of -

from [26]. The only difference between the two methodologies is the nature of 

coefficients dealt with i.e. non-interval and interval form. Another expansion is of 

balanced truncation approximation method in [27].  

 Algorithms in [21], [25] guaranteed to retain the stability of the reduced 

models if the higher order interval system is asymptotically stable. After a tenure 

of half decade, these algorithms are questioned for the retention of model stability 

in [28]. Here authors commented, unlike the non-interval RA, the interval RA do 

not preserve the intervals of the first time moments or Markov parameters. The 

above debate sprang up to critic, with some severe comments as;  

1) interval Routh approximants depend on the interval arithmetic 

implementations of the Routh expansion and inversion algorithms;  

2) interval Routh expansion algorithms cannot guarantee the success in 

constructing a full interval Routh array because they possibly generate an 

interval entry in the first column of the array that includes zero; and  

3) an unstable interval RA may be obtained for a stable higher order interval 

system even if an optimization approach implements the interval Routh 

expansion and inversion algorithms.  

Finally, based on robust frequency responses plot, the conclusion is made 

that an interval Routh approximant is not appropriate for the robust controller 

design because the interval arithmetic operations are irreversible. In continuation 

to the comments aforementioned, authors in [29] also mentioned the method 

proposed in [21] as erroneous i.e. a stable family of interval polynomials may yield 

an unstable family of reduced order polynomials. Additional to the comment, the 

authors proposed a modified method of direct truncation of Routh table for 

interval polynomials that guarantee a stable family of reduced order interval 

polynomials if the original family of higher order polynomials is stable. The 

justification for the amendment is via examples that offer the step response of 

reduced order models w.r.t. higher order systems. The revision stated in [30] is 
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not to generate a stable reduced interval model, as its already being acknowledged 

in [28]. Here, the reason for the loss of stability preservation through the method 

is the fact that the reduced-order interval polynomials have member polynomials 

not generated from the member polynomials of the higher-order interval 

polynomials. This comment is replied in [31], where it affirmed the initial 

statement of [29] to be correct. It presents the main idea of shrinking the 

uncertainty of the elements of the last existing line of the table, in the procedure 

of building the new line. For instance, according to the algorithm in [29], for 

3, 1 3 2i j n i ,  

 2,1

, 2, 1 1, 1

1,1

i
i j i j i j

i

C
C C C

C
        (1.1) 

where ,i jC  is the midpoint considered from the interval , , ,,ˆi j i j i jC C C . 

Precisely, to obtain “self-contained” interval, Routh tables one should replace 

the intervals in the first column by their centers, according to the choice made 

for ,i jC in (1.1) when constructing all the rows as observed in the stated examples. 

Additionally, it provides two conditions for computing stable Routh table for 

reduced interval model. 

In the process of execution, the proposal in [32], challenge for computational 

simplicity by avoiding the derivation of the time moments of the higher order 

-table.  

Ismail and Bandyopadhyay in [33] propose the implementation of Pade 

approximation. Later on, Ismail presented the reduction methodology for linear 

structured uncertain systems over the desired frequency interval in [34], [35]. It 

discusses the involvement of stability equation method to preserve the stability 

of the sixteen Kharitonov's polynomials and later compute the denominator 

coefficients of the reduced models. In [34], determination of the numerator 

coefficients of the reduced models is by matching the first (k-1) terms of 

Chebyshev polynomial series expansions of non-interval systems with that of the 

corresponding Chebyshev polynomial series expansions of non-interval models. 

The reduced order coefficients obtained by minimizing errors between the unit 

step responses of the sixteen fixed Kharitonov’s systems and the corresponding 

sixteen set Kharitonov’s lower models along with steady state constraints is in 

[35]. 

Beck et. al. proposed the model reduction of uncertain systems of varied forms 
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as for multidimensional in [36] and for unstable in [37]. The former methodology 

involves a complete generalization of balanced realizations, Gramians, and 

balanced truncation as solutions to a pair of linear matrix inequalities which 

generalize Lyapunov equations. The latter methodology is the generalization of 

coprime factors reduction method introduced by Meyer [38] to uncertain system 

models. The generalization along with a balanced truncation algorithm is made 

known in [39] and applies to a class of systems containing linear parameter 

-induced 

stability constraint required in the standard non-factored case. Another available 

methodology that guarantees the induced -norm error and its use for polytopic 

uncertain linear systems are in [40].  

Authors in [41] developed an algorithm for fixed-parameter models based on 

balancing transformations to parametric uncertain models. The combination of 

reduced sub-models obtained using serial and parallel decompositions in a 

symbolic environment provides the reduced model.  

A Gramian-based approach to model reduction of uncertain systems is in [42]. 

It introduces the controllability and observability Gramians regarding certain 

parameterized algebraic Riccati inequalities that enable a balanced truncation 

model reduction procedure for desired uncertain model. Additionally, it also 

presents an investigation for model reduction through H  which later on 

considers time-delay in [43]. Linear matrix inequalities provide the solutions to 

these problems regarding particular and a coupling nonconvex rank constraint. 

Also, the development of reduced-order model with specialized structures, such 

as zeroth-order model, delay-free model, no parameter uncertainties model is 

studied. The linear matrix inequalities engage as a general criterion for deriving 

reduced model in [44]. This approach uses different uncertain systems, such as 

linear time varying systems, Markovian jump systems, and hybrid jump systems 

both in continuous- and discrete-time domains.  

In recent times, evolutionary techniques like Genetic Algorithm and Particle 

Swarm Optimization grabbed attention from the researchers for providing an 

optimized result affecting the derivation of reduced models. Algorithms that 

employ such techniques are presented in [45], [46]. These techniques mixed with 

pole clustering algorithm and improved generalize least-squares method are in 

[47] and [48] respectively. Participation of these evolutionary techniques 

guaranteed the stability of reduced order model if the high order system is stable. 

Another novel algorithm for interval system conferred in [49] offers approximation 
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based on generalized time moments matching and Luus-Jaakola optimization 

practice that minimizes the performance indices.   

 Analogous to the amalgamated methods for order reduction of the non-

interval system, algorithms for interval systems that include RA method for 

deriving stable denominator polynomial combined with different algorithms for 

obtaining numerators are also reported. Few of them are the direct series 

expansion locating the time moments [50], Kharitonov’s polynomials [51], factor 

division method [52], [53]. The algorithm applicable to a non-interval system in 

[54] is extended directly to the interval systems in [55]. Reduction of a particular 

class of interval system using the conventional approach of Routh criterion is 

covered in [56] that deal with only a linear system instead of interval system while 

applying interval arithmetic rules to obtain the reduced order model. Authors in 

[57] determine the reduced-order numerator and denominator polynomials by 

Kharitonov’s approach and the RA method respectively. The method is similar to 

the work reported in [51], with the only difference in the process of validation of 

the obtained reduced interval models i.e. the former employs fundamental square 

error and other uses impulse energy response. Another available mixed 

methodology for order reduction in [58] engages the Eigenvalues obtained using 

Eigenspectrum preserving dynamic characteristics as centroid and stiffness of 

the higher order interval system. Here the numerator polynomial is obtained 

using Pade approximation through the time moments and Markov parameters 

retention. 

Apart from formulating algorithms for order reduction of interval systems, the 

prime concern is also to preserve stability. In recent times, this limitation is said 

to be removed in [59] proposing a revised Routh algorithm.  

Keeping the prime focus as stability preservation, recently Kumar et. al. 

proposed algorithms classified as mixed algorithms. Their algorithms cited in 

[60]–[65] are a mixture of two or more well-known prevailing techniques namely 

Mikhailov criterion, Cauer second form, differentiation method, factor division, 

moment matching, RA, and direct truncation method.  

Above discourse accounts the significant amount of literature for continuous-

time interval systems. Next heading is about the topic of interest i.e. discrete-time 

interval systems.  

1.3.2. Discrete-time Interval Systems  

This section confers the available reduction methodologies for discrete-time 

interval systems from their dawn.  
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As discussed earlier, discrete domain is acknowledged to be readily available 

and computationally simple triggering researchers to formulate reduction 

techniques for interval systems, similar to the non-interval systems. Here, the 

topic being relevant to the work in the thesis converses at par underneath;  

Exploitation of reduction technique for discrete-time interval systems initiated 

with the works of Ismail in [66]. They rectified the earlier observed drawback of 

not giving consideration to the initial transient response [67]. A possible cause 

for this drawback is the existence of Pade approximant for about z=1 for deriving 

reduced model. As a solution, they provided multipoint Pade approximation, 

where the higher-order system derives the Pade approximant of the lower model 

about 2k points, offering the numerator and denominator coefficients of the 

reduced models. 

Authors in [68], reported a combined approach for system reduction using 

Pade approximation for numerator coefficients and retention of dominant poles 

for denominator coefficients. The literature explains the advantages of Pade 

approximation including computational simplicity and the fitting of time 

moments. It also features the disadvantage of generating unstable reduced order 

model even though the original system is stable. Seeking the advantage of Routh 

approximation, together with Pade approximation, authors of [69] proposed a 

Routh-Pade approximation for discrete-time interval systems without any 

assurance for deriving stable reduced models.  

Presented under the above subheading is the optimization problem formulated 

regarding coupled (nonconvex) linear matrix inequalities [40], employed for model 

reduction of interval continuous-time systems in polytopic domains. This linear 

matrix inequalities are engaged here for discrete-time interval systems [70]. 

Assuncao and Peres have attempted the reduction methodology in a way that the 

H2 and the H  norm of the error between the original interval system and the 

reduced one are guaranteed minimum. It also presents an effort with the mixed 

H2/H  for order reduction.  

Dolgin and Zeheb researched the order reduction of interval discrete-time SISO 

systems in [71], [72]. The investigation directed towards the approximation of 

high-order system by fixed-coefficients and unpredictable low-order system. The 

estimate considered the idea of the infinity norm of “absolute error’’ (i.e. 

minimizing the maximum of distances between the original and the reduced 

systems over all frequencies), which later on modified to the notion of distance 

liable to interval systems i.e. “signed distance.” For computation of the reduced 
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models, they employed manipulated linear semi-infinite programming. The 

method is nevertheless, an extension of the Complex Chebyshev Approximation 

problem enabling the treatment of interval systems.  

The above authors introduced a novel approach by directly minimizing the 

maximal “distance” (error) between the higher-order interval system and the 

reduced-order fixed models in [73]. The formulation performs the special 

treatment as linear semi-infinite programming problem with linear constraints. 

An example of degree 18 illustrates the approach by approximating it to a fixed-

coefficients polynomial of degree 5 pointing reliable results. 

The outburst of evolutionary approaches in the 21st century impressed 

discrete-time interval systems also as Hsu, Lu and Wang proposed derivation of 

reduced-order models by Genetic Algorithm [74] based on the resemblance of 

discrete sequence energy between the higher-order and reduced models. Later on 

in 2012, again GA is used for deriving the reduced model in [75] with an 

improvisation of computing minimum error.  

Choo formulated the derivation of reduced denominator polynomial by 

applying interval arithmetic to dominant poles of the higher order system in [76]. 

It remarked two limitations; a) obtained poles may be of larger ranges than 

desired ones and b) unstable polynomial from the stable polynomial may be 

derived. However, the author attempted for a simple technique to partially 

overcome the stability problem as stated in the earlier literature. 

A direct extension of the earlier available methodology for non-interval 

systems is made known in [77] by Pappa and Babu, using differentiation 

technique. The algorithm retains the initial Markov parameters and time 

moments of the higher order system. The proposed algorithm is an extension of 

[78] where modified differentiation combines with Pade’s approximation. The 

proposal excludes the additional computation of Routh type arrays, reciprocal 

transformations and the time moments of the nth order higher order system. The 

proposal was an altered version of the differentiation reported in [79] for non-

interval systems. 

In early 2009, Zhang, Boukas, and Shi investigated a class of polytopic 

discrete-time uncertain switched linear systems with average dwell time 

switching [80]. The proposal discusses the stability criterion for general discrete-

time switched systems and a µ-dependent approach for model order reduction 

posting the conditions for existence derived via linear matrix inequalities 

formulation. The obtained models are stated to be robustly exponentially stable 
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and achieve an exponential H  performance. Authors suggested the future scope 

extending the ideas and methods in the article to systems with time delays.  

The description by Li in [81] addresses the coprime factorization and model 

reduction problems for discrete-time uncertain systems which are possibly 

robustly unstable. It is a possible extension of the work investigated in [82] for 

continuous-time uncertain systems. Here studied coprime factor model reduction 

problem is revisited from [39] which extends the coprime factor approach [38] for 

linear time invariant systems to the underlying uncertain systems. The study of 

this issue grounds on the results in [39] and the author’s previous work on 

interval systems  [42], [82] that reviews two classes of continuous uncertain 

systems. Here, they investigated the generalized controllability, observability 

Gramians, and balanced truncation model reduction approaches. The proposal 

in [81], emphasize for not being trivial as there is a significant difference between 

continuous and discrete systems especially in the presence of uncertainty. A 

sufficient condition is also presented to guarantee the closed-loop stability when 

the reduced model replaces the original model. 

Singh and Chandra presented a method for model reduction using dominant 

poles retention and direct series expansion method in [83] for obtaining 

denominator and numerator polynomials respectively. The direct series 

expansion method used for calculating time moments is submitted to be a novel. 

The same authors proposed a mixed algorithm in [84] where the reduced model 

is derived using pole-clustering method along with Padé approximation technique 

by minimizing the errors between first k-time moments of the higher order system 

and the reduced order patterns. In [85], the method employs pole clustering for 

the denominator, and the numerator is derived by retaining first k time 

moments/Markov parameters of high-order discrete interval system that 

minimizes the error between the higher order system and the reduced order 

models. The minimization of the objective function is the Luus Jaakola algorithm 

as the weighted squared sum of errors.  

Mixed approach for order reduction is readily available in [86] using least 

squares and time moments matching techniques. In [87] Cauer second form, -

table, -table, factor division algorithms in an amalgamated form are accessible. 

Another combined procedure is in [88] that uses Mikhailov criterion and factor 

division method.  

In recent past, Sharma and Kumar provided a modified  Routh 

approximation method [89]. Here, the denominator is constructed based on the 
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changed -table concept conferred by Dolgin and Zehab [29]. However, the 

presented methodology is an extension of the work in [90]. 

The above-cited literature showcases the existence of fewer order reduction 

methods for discrete-time interval systems. Thus, the thesis directs towards the 

development of techniques in this particular domain. 

1.4. Thesis Contributions 

The primary objective of the thesis is to develop algorithms for order reduction 

of discrete-time interval systems. Most of the algorithms discussed confer to 

retain the dynamic characteristics of the higher order system and others not. A 

brief discussion of the limitations discovered during the discourse of the proposed 

algorithm is also available.  

The thesis formulates the algorithms based on a) Routh Approximation and 

b) Assorted Techniques.  

The proposed algorithms aim to produce reduced-order models of their higher-

order representations efficiently. They are verified and validated over the 

examples available from the literature. Lastly, the thesis also addresses the 

possible future works. 

1.5. Road Map of the Thesis 

The illustration of work is spread over six chapters and organized as outlined 

below commencing with  

Chapter 1 that gives an insight into the introduction and motivation to the 

work performed. It reports the essential literature survey for the algorithms 

available from the day of origin for the non-interval system to present day’s 

interval system. Briefly, it states the thesis contribution and road map to the 

thesis write-up.  

Chapter 2 sketches the preliminaries essential for understanding the 

algorithms with admittance to the need of MOR for interval system. Desired assets 

include interval arithmetic, stability check algorithm, performance analysis tools, 

problem statement and the discrete transformation.  

Chapter 3 reports the algorithms based on Routh Approximation approach.  

These algorithms desire an appropriate discrete transformation for application of 

Routh algorithm. Linear or bilinear transformations is used to fulfill the 
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expectation followed by the specific procedural steps to meet up with the discrete-

time interval systems. 

Chapter 4 presents the other set of developed algorithms for the order 

reduction of discrete-time interval systems based on Assorted approach. These 

algorithms exhibit themselves to be unique in their preparation. 

Chapter 5 demonstrates two separate assessments of the results in the 

thesis. One is an evaluation among the two frequently used discrete 

transformation techniques namely linear and bilinear transformation used for 

order reduction of discrete-time systems. Another is the overall analysis of 

proposed algorithms and their results observed throughout the thesis including 

the limitations if discovered any.  

Last Chapter 6, concludes the write-up with an inevitable development of 

successful algorithms of varied forms for discrete-time interval systems. The 

chapter also suggests the future scope of work to be carried out.  

1.6. Summary 

MOR aim at approximating a complex system by a simpler model, while 

preserving most of the dynamic characteristics to the possible extent. The 

proposal in the chapters ahead for order reduction of discrete-time interval 

system focuses on the mentioned aim. Throughout the thesis, the label of System, 

and Model are used for the higher and lower order mathematical representations 

respectively. 

Next chapter discusses the desired preliminaries for MOR. 

  


