LIST OF FIGURES

Figure No	Caption	Page No
Figure 2.1	Flow regimes in bubble columns	9
Figure 2.2	Parameters defining bubble shape for ellipsoidal bubbles	24
Figure 2.3	Different bubble shapes	24
Figure 3.1	Experimental Set-up for bubble column	46
Figure 3.2	Results of the image processing tools	50
Figure 4.1	Image of air-water dispersion in bubble column	55
Figure 4.2	Variation of H_e with time at different U_g and H_s for air water system	55
Figure 4.3	Effect of U_g on pixel density as a function of H	56
Figure 4.4	Variation of H_e with time at different U_g and H_s for air water system	56
Figure 4.5	Variation of ACF with time at different U_g and H_s for air water	57
	system	
Figure 4.6	ACF vs time for $U_g = 0.168$ m s ⁻¹ and $H_s = 0.145$ m	58
Figure 4.7	τ vs U_g as a function of H_s	59
Figure 4.8	Comparison of f_w with correlations	62
Figure 4.9	f_w as a function of U_g and H_s	63
Figure 4.10	e_w as a function of U_g and H_s	64
Figure 4.11	Correlation between gas holdup calculated by height measurement	66
	and pixel intensity	
Figure 4.12	Variation of ε with U_g at $H_s = 0.20$ to 0.28 m for air water system	66
Figure 4.13	Drift flux diagram- U_g (1- ε) vs U_g at $H_s = 0.20$ to 0.28 m for air	67
	water system	
Figure 4.14	Variation of ε with U_g at $H_s = 0.2$ m for air-CMC soln. system at	68

CMC Conc. = 0.5, 1.0, 2.0 and 3.0 % (w/w).

Figure 4.15	Drift flux diagram- U_g (1- ε) vs U_g at $H_s = 0.2$ m for air-CMC soln. system	68
Figure 4.16	BSD for distilled water at $U_g = 0.0416 \text{ m s}^{-1}$, $H_s = 0.23 \text{ m}$.	70
Figure 4.17	Effect of U_g on BSD for air-water at $H_s = 0.23$ m	70
Figure 4.18	Effect of H_s on BSD for air-water at $U_g = 0.0167 \text{ ms}^{-1}$	71
Figure 4.19	Effect of H_s on BSD for air-water at $U_g = 0.0417 \text{ ms}^{-1}$	72
Figure 4.20	BSD for 1.0%(w/w) CMC solution at $U_g = 0.0416 \text{ m.s}^{-1}$, $H_s = 0.23 \text{ m}$.	73
Figure 4.21	Effect of U_g on BSD for 1.0 % (w/w) CMC solution at $H_s = 0.23$ m.	74
Figure 4.22	Effect of conc. on BSD for aq. CMC soln. at $U_g=0.0375 \text{ ms}^{-1}$, $H_s=0.23 \text{ m}$.	74
Figure 4.23	Variation of d_{32} as a function of U_g and H_s .	76
Figure 4.24	Variation of d_{32} with U_g at various CMC conc.	77
Figure 4.25	E for air/water at $U_g=0.0083 \text{ m s}^{-1}$, $H_s=0.2 \text{ m}$.	79
Figure 4.26	Variation of a_i with U_g and H_s for air-water system	80
Figure 4.27	Variation of a_i with U_g and CMC concentration at $H_s = 0.23$ m.	80
Figure 4.28	Schematic sketch of the model	83
Figure 4.29	Comparison of kL estimated by present method with that using correlations of Akita et al(1974), Pohorecki (2001) and Pohorecki (2001).	86
Figure 4.30	Comparison of a_i estimated by present method with that using correlations of Akita et al(1974), Pohorecki (2001) and Pohorecki (2001).	87
Figure 4.31	Comparison of $(k_L.a_i)$ estimated by present method with that using correlations of Akita et al(1974), Pohorecki (2001) and Pohorecki (2001).	88
Figure 4.32	Comparison of $(k_L.a_i)$ estimated by present method with that using correlations of Akita et al(1974), Pohorecki (2001) and Pohorecki (2001).	88
Figure 4.33	Average bubble position and velocity assumed in a bubble column	90
Figure 4.34	Comparison of values of gas holdup estimated from Equations 5.27	93
	and 5.28 with data of Esmaeili et al. (2015).	