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5.1 Introduction 

Amides are considered as an essential privileged structure in natural products and 

pharmaceutical compounds and also play a vital role in the elaborating protein and peptide 

synthesis. The organic compounds containing amide groups have broadly investigated due 

to industrial purpose for synthesizing color pigments, detergent, lubricants, cosmetics, 

treatment of drinking and sewage water and used in polymer chemistry for the lactam 

synthesis (Naik et al. 2015, Asif 2016, Carey et al. 2006, García et al. 2010, Pattabiraman et 

al. 2011, Hu et al. 2019). Some valuable commercial drugs which contain amide group are 

shown in Figure 5.1. 

Traditionally amides are synthesized by coupling of ammonia with acid derivatives 

e.g., acid chloride, acid anhydride and esters etc. Hydrolysis of cyanide and transamidation 

are also important methods for the synthesis of amides derivatives (Dunetz et al. 2016, 

Gawande et al. 2013, Mylavarapu et al. 2007, Mishra et al. 2018). Different name reactions 

are also reported as the alternative methods for amide synthesis. Beckmann reaction is one 

of the most intriguing method due to its peculiar properties (Valizadeh et al. 2014, Eshghiet 

al. 2006, Reinares-Fisac et al. 2019, Tamaddon et al. 2007). 
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Figure 5.1 Some examples of bioactive substituted amides.  

Beckmann reaction is generally catalyzed by strong lewis and bronsted acids at high 

temperature. A large variety of catalysts have been used for the synthesis of amides such as 

Al2O3/CH3SO3H (Sharghi et al. 2001), (NH4)2S2O8 (Mahajan et al. 2016), SiO2@H2SO4 

(Eshghi et al. 2007), SiO2@HCOOH (Kuksenok et al. 2016), TsOH (Hyodo et al. 2018), 

Cs2CO3 (Wang et al. 2014), FeCl3 (Gowda et al. 2011), Sc(OTf)3 (Allam et al. 2011), Zn 

(Kumari et al. 2017), Cu(II) (Rezaei et al. 2017), Ru(II) (Kanchanadevi et al. 2015), Rh 

(Raja et al. 2014), Pd(II) (Rostamnia et al. 2016, Ali et al. 2010), nano-sulfated titania 

(Hosseini-Sarvari et al. 2011), Fe3O4 (KarimKoshteh et al. 2017), ionic liquid (Rani et al. 

2016, Khalafi-Nezhad et al. 2014) etc. Some non-conventional microwave irradiation 

(Eshghi et al. 2003), ultrasound-assisted, electrochemical (Ke et al. 2019) and 

photocatalytic (Chen et al. 2019) methods have also been reported. Although, most of these 
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methods have their own benefits and drawbacks like harsh reaction conditions, expensive 

metallic catalysts, harmful non-volatile organic solvents, non-recyclability of catalyst, long 

reaction time, tedious reaction workup and low yield of the products. Considering the 

above facts, the development of an environmentally efficient and greener protocol for the 

synthesis of the amides is still in demand and we have directed our studies towards finding 

a suitable green catalystic system for the synthesis of primary and secondary amides. 

Recently, green solvents (e.g. polyethylene glycol, fluorous compounds, ionic 

liquids, water) and bio-based solvents  (fatty acid, ethyl lactate, glycerol, p-cymene) got 

much more attention due to eco-compatibility and sustainability of the reactions. In 

continuation of this, lactic acid is also used as solvent which is widely used in the 

agricultural, food, pharmaceutical, textile and cosmetic industries. Commercial lactic acid 

is produced naturally by fermentation of carbohydrates such as glucose, sucrose or lactose 

it is white, odorless, non-toxic bio-based weak acid pKa is 3.7, in solution lactic acid can 

lose a proton from the acidic group, producing the lactate ion CH3CH(OH)COO−. 

Recently, Bodireddy et al. has developed green and efficient multicomponent reactions 

(MCR) catalysed by lactic acid (Bodireddy et al. 2016, Gupta et al. 2015, Yu et al. 2016). 

Due to its unique properties, it is continuously used in organic synthesis as a catalyst as 

well as solvent. 

 Iodine containing molecules (such as molecular iodine, potassium iodide and 

sodium iodine) plays a vital role in organic synthesis due to its various benefits. Various 
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type of organic reaction e.g. Michael addition, Aldol reaction, esterification, one-pot 

multicomponent reactions and oxidation reactions etc. are catalyzed by iodine, KI or 

hypervalent iodine containing molecules (Chen et al. 2017, Song et al. 2015, Zhang et al. 

2018, Yoshimura et al. 2013). Potassium iodide is less toxic, cheaper and environmental 

friendly as compare to molecular iodine. In view of the above, herein, we disclose the use 

of lactic acid/ KI as an efficient catalytic system for the synthesis of amides by one-pot 

tandem Beckmann rearrangement under metal and solvent free condition (Scheme 5.1). 

 

Scheme 5.1 Conversion of aldehydes/ ketones to amides via Beckmann rearrangement 

5.2 Results and discussion  

5.2.1 Optimsation of reaction conditions  

At the outset, Beckmann reaction of benzaldehyde (1a) was investigated with 

hydroxylamine hydrochloride (2) (molar ratio 1: 1.2) in the presence of KI/ lactic acid 

catalytic system in order to optimize  reaction conditions. The consequences of different 

parameters including solvents, type of catalyst, catalyst loading, reaction temperature and 

reaction time were studied.   
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Several solvents were tested in the presence of KI/ lactic acid (0.5/1 equiv.) for the 

synthesis of benzamide. Reactions were performed in both polar protic (ethanol, methanol 

and water), polar aprotic (acetonitrile, dichloroethane) and also in non-polar solvents 

(xylene, toluene) at 80 
o
C. In case of polar solvents it gave (30-60%) yield of the product 

(Table 5.1, entries 1-5) while in case of non-polar solvents very poor yield only 10% was 

obtained (Table 5.1, entries 6-7). The results were not satisfactory and show that these 

solvents were not efficient for the conversion of carbonyl to amide in excellent yield.        

To our great delight, a significant improvement was observed when the reaction was 

proceeded without additional solvent at 80 
o
C reaction was completed in 2h with 90% yield 

of the product (3a) it indicates that the extent of conversion was independent of solvent 

(Table 5.1, entry 8). After optimizing solvents, different iodine containing compouds 

(molecular iodine, sodium iodide, lithium iodide and 2-iodoxybenzoic acid) in the presence 

of lactic acid were also applied for the amide synthesis and we got (10-60%) yield of the 

product in 5 h (Table 5.1, entries 12-15). The results indicate that KI/ lactic acid found the 

best catalytic system (Table 5.1, entry 9). 

 In order to optimize the amount of the catalyst we started optimization of catalyst 

KI with 1 equiv. of  lactic acid, the first experiment was carried out in the absence of KI 

and the reaction did not afford the final product (3a) and stopped after intermediate 

formation (oxime) (Table 5.1, entry 11). Next we increased the amount of KI (0.2-0.7 

equiv.) and got 45-91% yield of the product in 2h. These results show that increasing the 

amount of KI from 0 to 0.5 equiv affects the yield of amide, but further any increment in 
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the amount of KI from 0.5 to 0.7 did not make any significant difference in the yield of the 

product (Table 5.1, entries 16-18). Next the amount of the lactic acid was also optimized 

(0.5-2 equiv.) with 0.5 equiv. of KI, in the absence of lactic acid no product was obtained 

(Table 5.1, entry 10) and the best result was obtained when the reaction was performed 

with 1 equiv. of lactic acid (Table 5.1, entry 8). This also shows that tuning of the 

equivalent of KI and lactic acid had an effect on the yield of 3a and it is essential for this 

reaction (Table 5.1, entry 19, 20). 

To find out the effect of temperature, the model reaction was carried out at different 

temperatures by using KI/ lactic acid (0.5/1 equiv.). At room temperature, no desired 

product was obtained but the yield of the product (3a) was improved as the temperature was 

increased (40-80
0
C) and observed maximum yield 90% at 80

0
C. Further increase in 

temperature did not improve the yield of the product (Table 5.1, entries 21-24).  

The results show a combination of lactic acid and KI was found efficient to catalyze 

Beckmann reaction  in a high yield. So the optimized conditions for Beckmann reaction is 

benzaldehyde (1.0 mmol), hydroxylamine hydrochloride (1.2 mmol) in the presence of      

KI/ lactic acid (0.5/1equiv.) catalytic system at 80 
0
C was the optimum condition for the 

synthesis of benzamide. 
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Table 5.1 Optimization of different reaction conditions on the yield of 3a
a
 

 

Entry Solvent Catalyst (equiv.) Time (h) Temp. Yield[%]
b
 

1 Acetonitrile  KI /Lactic acid (0.5/1) 5 80 30 

2 Dichloro- 

Methane 

KI /Lactic acid (0.5/1) 5 80 30 

3 Ethanol KI /Lactic acid (0.5/1) 3 80 40 

4 Methanol KI /Lactic acid (0.5/1) 3 80 32 

5 Water KI /Lactic acid (0.5/1) 3 80 60 

6 Xylene KI /Lactic acid (0.5/1) 5 80 10 

7 Toluene KI /Lactic acid (0.5/1) 5 80 10 

8 - KI /Lactic acid (0.5/1) 2 80 90 

9 - - 2 80 NR 

10 - KI (0.5) 2 80 NR 

11 - Lactic acid (1) 2 80 NR 

12 - I2/Lactic acid (0.5/1) 5 80 30 

13 - LiI/Lactic acid (0.5/1) 5 80 10 
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14 - NaI/ Lactic acid (0.5/1) 5 80 10 

15 - IBX /Lactic  acid 

(0.5/1)  

5 80 60 

16 - KI/ Lactic acid (0.2/1) 5 80 45 

17 - KI/ Lactic acid (0.4/1) 5 80 80 

18 - KI /Lactic acid (0.7/1) 2 80 91 

19 - KI /Lactic acid 

(0.5/0.5) 

2 80 40 

20 - KI /Lactic acid (0.5/2) 2 80 90 

21 - KI/ Lactic acid (0.5/1) 2 RT NA 

22 - KI /Lactic acid (0.5/1) 2 40 30 

23 - KI/ Lactic acid (0.5/1) 2 60 67 

24 - KI/ Lactic acid (0.5/1) 2 100 90 

a
 Reaction condition:Benzaldehyde 1a (1.0 mmol), hydroxylamine hydrochloride 2 (1.2 mmol) in 0.2 mL 

solvents and with different catalytic system.
 b
 Isolated yield. 

5.2.2. Substrate Scope 

With the established optimized reaction conditions in hand, we examined the scope 

and compatibility of the aromatic aldehydes such as benzaldehyde (1a),                                

4-aminobenzaldehyde (1b), 4-methoxybenzaldehyde (1c), 4-hydroxybenzaldehyde (1d),      

2-hydroxybenzaldehyde (1e), 4-nitrobenzaldehyde (1f), 2-nitrobenzaldehyde (1g),             

4-bromobenzaldehyde (1h), 4-fluorobenzaldehyde (1i) and nicotinaldehyde (1j) gave 

corresponding primary amide benzamide (3a), 4-aminobenzamide (3b),                               
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4-methoxybenzamide (3c), 4-hydroxybenzamide (3d), 2-hydroxybenzamide (3e),               

4-nitrobenzamide (3f), 2-nitrobenzamide (3g), 4-bromobenzamide (3h), 4-fluorobenzamide 

(3i) and nicotinamide (3j) in good to excellent yield. Aromatic aldehyde containing 

electron-withdrawing group gave the desired product in excellent yield in shorter reaction 

time than the electrondonating groups (Table 5.2). 

 Table 5.2 Synthesis of substituted primary and secondary amides
a 

Entry Reactant                             Product Time (h) Yield 

[%]
b
 

1 

 

2 90 

2 

 

2.5 86 

3 

 

2.5 85 

4 

 

2.5 88 
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5 

 

2.5 87 

6 

     

2 90 

7 

  

2 91 

8 

   

2 89 

9 

  

2 87 

10 

     

2.5 84 

11 

     

2.5 92 



                                                                                             Chapter 5 

 

Department of Chemistry IIT (BHU), Varanasi  Page 167 
 

12 

 

2.5 90 

13 

 

2.5 88 

14 

     

2.5 87 

15 

  

2 85 

16 

 

2 87 

17 

 

2 89 

18 

 

2 87 
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19 

 

2 88 

20 

 

2 89 

21 

 

2.5 85 

         a
Reaction conditions: Aromatic aldehydes/ ketones 1 (1.0 mmol), hydroxylamine hydrochloride 2 (1.2 mmol) 

and KI /Lactic acid (0.5/1equiv.) were heated at 80 
0
C. 

b
 Isolated yield. 

 

Due to the achievement of the above methodology in primary amide synthesis, this 

methodology was also applied for the synthesis of a secondary amides from ketones. 

Various aromatic ketone such as acetophenone (1k) p-methylacetopheone (1l),                   

p-hydroxyacetophenone (1m), o-hydroxyacetophenone (1n), p-chloroacetophenone (1o),     

p-bromoacetophenone (1p), m-nitroacetophenone (1q), benzophenone (1r),                             

2-chlorobenzophenone (1s),  4-nitrobenzophenone (1t) and aliphatic cyclic ketone 

cyclohexanone gave secondary amides N-phenylacetamide (3k), N-(p-tolyl)acetamide (3l), 

N-(4-hydroxyphenyl)acetamide (3m), N-(2-hydroxyphenyl)acetamide (3n), N-(4-

chlorophenyl)acetamide (3o), N-(4-bromophenyl)acetamide (3p), N-(3-

nitrophenyl)acetamide (3q), N-phenylbenzamide (3r), (2-chlorophenyl)(phenyl)methanone 
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(3s), (4-nitrophenyl)(phenyl)methanone (3t), azepan-2-one  (3u) respectively in excellent 

yield. Acetophenone derivatives with electron-donating and electron-withdrawing 

substituents could be accommodated to afford amides in excellent yields (85–92%) (Table 

5.2 entries 11-21). 

5.2.3 Appilcation of this methodology (Synthesis of Paracetamol and caprolactum) 

To demonstrate the utility of this mild method, we accomplish the synthesis of 

Paracetamol, a commercial analgesics and antipyretics is used for the treatment of pain and 

fever directly from aldehyde. Excitingly 4-hydroxy acetophenone gave 88% of the 

Paracetamol (3m) under the optimized conditions in 2h. This methodology is also useful for 

the synthesis of caprolactum (3u), yield 85 % in 2.5h from cyclohexanone which is used for 

the synthesis of polymer Nylon 6 and several medicinally active drugs such as 

pentylenetetrazol, meptazinol and laurocapram etc. These examples illustrate the potential 

synthetic utility of this method.  

5.2.4 Plausible reaction Mechanism 

A plausible reaction pathway for the conversion of carbonyl derivatives into the 

corresponding amides is outlined in (Figure 5.2). Firstly, combination of lactic acid and KI 

gives hydrogen iodide, which polarizes the carbonyl group that facilitates the reaction with 

hydroxylamine hydrochloride and gave oxime (I), which upon dehydration produces 

cyanide (II) and then the hydrolysis of cyanide gives amide derivatives (3). 
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Figure 5.2 A plausible reaction pathway for the conversion of aldehyde derivatives to 

amides. 

5.3 Experimental section 

5.3.1 General procedure for the synthesis of amides   

A mixture of aldehyde/ketone (1.0 mmol), hydroxylamine hydrochloride (1.2 mmol) 

and KI/ lactic acid (0.5/1equiv) was stirred at 80 
0
C for the appropriate time. The progress 

of reaction was monitored by thin-layer chromatography (n hexane: ethyl acetate). After 

completion,  the reaction mixture was allowed to cool to room temperature and diluted with 

ethylactate and washed with water, organic layer was dried over sodium sulfate, 

concentrated and  purified through column chromatography (Hexane: ethyl acetate).    
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5.4  Analytical data 

5.4.1 Analytical data of primay and secondary amide 

Benzamide (3a) Yield 90 %; White solid; m.p. 128-129 
0
C; 

1
H NMR (500 MHz, CDCl3)     

δ (ppm): 7.80 -7.79 (d, 2H) 7.50-7.49 (t, 1H), 7.44-7.41 (t, 2H), 6.20 (s, 2H); 
13

C NMR 

(125 MHz, CDCl3) δ (ppm):  169.59, 133.35, 131.96, 128.59, 127.31. 

4-Aminobenzamide (3b) Yield 86 %; White solid; m.p.180- 181 
0
C; 

1
H NMR (500 MHz, 

DMSO-d6) δ (ppm): 7.62-7.61 (d, 2H), 6.90 (s, 2H), 6.55-6.54 (d, 2H), 5.60 (s, 1H, NH2); 

13
C NMR (125 MHz, DMSO-d6) δ (ppm): 168.30, 151.74, 129.23, 121.00, 112.60. 

4-Methoxybenzamide (3c) Yield 85 %; White solid; m.p. 166-167 
0
C; 

1
H NMR (500 

MHz, DMSO-d6) δ (ppm): 7.77-7.75 (d, 2H), 6.92-6.90 (d, 2H), 3.83 (s, 3H), 1.64 (s, 2H); 

13
C NMR (125 MHz, DMSO-d6) δ (ppm): 169.59, 163.30, 129.97, 126.27, 114.50, 56.12. 

4-Hydroxybenzamide (3d) Yield 88 %; White solid; m.p. 161-162 
0
C; 

1
H NMR (500 

MHz, DMSO-d6) δ (ppm): 9.94 (s, 1H, OH), 7.74-7.74 (d, 2H), 7.07 (s, 2H), 6.78-6.77     

(d, 2H); 
13

C NMR (125 MHz, DMSO-d6) δ (ppm): 167.27, 159.73, 129.05, 124.56, 114.26. 

2-Hydroxybenzamide (3e) Yield 87 %; White solid; m.p. 140-141 
0
C; 

1
H NMR (500 

MHz, DMSO-d6) δ (ppm): 12.91 (s, 1H, OH), 8.37 (s, 2H, NH2) 7.82-7.80(t, 1H), 7.40-7.37 

(m, 1H), 6.88- 6.85 (t, 2H); 
13

C NMR (125 MHz, DMSO-d6) δ (ppm): 171.8, 160.63, 

134.02, 128.00, 118.40, 117.24, 114.28. 
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4-Nitrobenzamide (3f) Yield 90 %; White solid; m.p. 199-201 
0
C; 

1
H NMR (500 MHz, 

DMSO-d6) δ (ppm): 8.30-8.29 (d, 2H), 8.10-8.08 (d, 2H), 7.72 (s, 2H); 
13

C NMR (125 

MHz, DMSO-d6) δ (ppm): 165.67, 148.54, 139.47, 128.38, 122.92. 

2-Nitrobenzamide (3g) Yield 91 %; White solid; m.p. 176-177 
0
C; 

1
H NMR (125 MHz, 

DMSO-d6) δ (ppm): 8.15 (s, 2H), 8.00-7.99 (d, 1H), 7.78-7.75(t, 1H), 7.69-7.63(m, 2H); 

13
C NMR (125 MHz, DMSO-d6) δ (ppm): 166.66, 146.73, 132.83, 132.07, 130.12, 128.33, 

123.44. 

4-Bromobenzamide (3h) Yield 89 %; White solid; m.p. 190-191 
0
C; 

1
H NMR (500 MHz, 

CDCl3) δ (ppm): 7.81-7.80 (d, 2H), 7.67-7.65 (d, 2H), 7.45 (s, 2H); 
13

C NMR (125 MHz, 

CDCl3) δ (ppm): 166.42, 132.89,130.73, 129.09, 124.50. 

4-Fluorobenzamide (3i) Yield 87 %; White solid; m.p. 155-156 
0
C; 

1
H NMR (500 MHz, 

CDCl3) δ (ppm): 8.18 (s, 2H), 7.60-7.57 (d, 2H), 7.09-7.07 (d, 2H); 
13

C NMR (125 MHz, 

CDCl3) δ (ppm): 164.57, 149.66, 128.92, 127.97, 115.58. 

Picolinamide (3j) Yield 84 %; White solid; m.p. 110-112 
0
C; 

1
H NMR (500 MHz, CDCl3) 

δ (ppm): 9.04 (s, 2H), 8.70-8.69 (d, 1H), 8.21-8.17 (m, 1H), 7.61 (s, 4H), 7.50-7.47(d, 3H); 

13
C NMR (125 MHz, CDCl3) δ (ppm): 166.00, 151.39, 148.19, 134.65, 129.18, 122.89. 

N-Phenylacetamide (3k) Yield 92 %; White solid; m.p. 114-115 
0
C; 

1
H NMR (500 MHz, 

CDCl3) δ (ppm): 7.62 (s, 1H), 7.43-7.42 (d, 2H), 7.24-7.21 (t, 2H), 7.04-7.02(t, 1H), 2.08 
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(s, 3H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 168.82, 137.96, 128.76, 124.26, 120.25, 

24.29. 

N-(p-Tolyl)acetamide (3l) Yield 90 %; White solid; m.p. 152-153 
0
C; 

1
H NMR (500 MHz 

CDCl3) δ (ppm): 7.45 (s, 1H), 7.35-7.34 (d, 2H), 7.09-7.07 (d, 2H), 2.28 (s, 3H), 2.12(s, 

3H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 168.82, 137.89, 128.76, 124.26, 120.25, 24.29. 

N-(4-Hydroxyphenyl)acetamide (3m) Yield 88 %; White solid; m.p. 169-170 
0
C;             

1
H NMR (500 MHz, DMSO-d6) δ (ppm): 9.71 (s, 1H), 9.38 (s, 1H), 7.29-7.27 (d, 2H), 

6.67-6.65 (d, 2H), 1.96 (s, 3H); 
13

C NMR (125 MHz, DMSO-d6) δ (ppm): 168.32, 153.12, 

130.68, 121.18, 115.04, 23.49. 

N-(2-Hydroxyphenyl)acetamide (3n) Yield 87 %; White solid; m.p. 207-208 
0
C; 

1
H 

NMR (500 MHz, CDCl3) δ (ppm): 7.50-7.47 (d, 1H), 7.45-7.44 (d, 1H),   7.12-7.08 (d, 1H) 

7.08- 6.98 (d, 1H), 2.60 (s, 3H), 2.02 (s, 1H), 1.22 (s, 1H); 
13

C NMR (125 MHz, CDCl3)             

δ (ppm): 171.16, 155.52, 154.10, 134.88, 127.26, 120.60, 119.68, 115.49, 21.02. 

N-(4-Chlorophenyl)acetamide (3o) Yield 85 %;  White solid; m.p. 178-179 
0
C; 

1
H NMR 

(500 MHz, CDCl3) δ (ppm): 7.39-7.37 (d, 2H), 7.21-7.20 (d, 2H), 2.11(s, 3H); 
13

C NMR 

(125 MHz, CDCl3) δ (ppm): 168.25, 151.02, 136.40, 129.00, 121.04, 24.56. 

N-(4-Bromophenyl)acetamide (3p) Yield 87 %; White solid; m.p. 168-169 
0
C; 

1
H NMR 

(500 MHz, DMSO-d6) δ (ppm): 10.07 (s, 1H), 7.57-7.45 (d, 4H), 2.03 (s, 3H); 
13

C NMR 

(125 MHz, DMSO-d6) δ (ppm): 168.04, 138.19, 131.00, 120.39, 114.03, 23.54. 
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N-(3-Nitrophenyl)acetamide (3q) Yield 94 %; White solid; m.p. 155-156 
0
C; 

1
H NMR 

(500 MHz, CDCl3) δ (ppm): 8.34 (s, 1H), 7.94-7.92 (s, 1H), 7.69 (s, 1H), 7.46 (t, 1H), 2.22 

(s, 3H), 1.64 (s, 1H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 168.77, 148.61, 138.65, 

129.49, 125.49, 125.03, 118.72, 118.72, 114.31, 24.25. 

N-Phenylbenzamide (3r) Yield 89 %; White solid; m.p. 162-163 
0
C; 

1
H NMR (500 MHz, 

CDCl3) δ (ppm): 7.86-7.84 (d, 3H), 7.63-7.62 (d, 2H), 7.55-7.52 (t, 1H), 7.48-7.45(t, 2H), 

7.37-7.34 (t, 2H), 7.15-7.12 (t, 1H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 165.74, 137.90, 

135.00, 131.83, 129.09, 128.78, 127.00, 124.57, 120.19. 

N-(2-Chlorophenyl)benzamide (3s) Yield 87%; White solid; m.p. 97-98 
0
C; 

1
H NMR 

(500 MHz, CDCl3) δ (ppm): 8.58-8.59 (d, 1H), 8.45 (s, 1H), 7.93-7.91(t, 2H), 7.59-7.57(m, 

1H), 7.53-7.50 (t, 2H), 7.42-7.41 (d, 1H), 7.35-7.32 (t, 1H), 7.10-6.99 (t, 1H); 
13

C NMR 

(125 MHz, CDCl3) δ (ppm): 165.26, 134.73, 134.61, 132.17, 129.01, 128.93, 127.87, 

127.07, 124.73, 121.49. 

N-(4-Nitrophenyl)benzamide (3t) Yield 89 %; White solid; m.p. 97-98 
0
C; 

1
H NMR      

(500 MHz, DMSO-d6) δ (ppm): 8.27-8.26 (d, 2H), 8.07-8.05 (d, 2H), 7.98-7.96 (m, 1H), 

7.56-7.55 (d, 1H); 
13

C NMR (125 MHz, DMSO-d6) δ (ppm): 165.25, 159.37, 157.31, 

135.23, 127.58, 121.99, 115.54. 
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azepan-2-one (3u) Yield 85 %; White solid; m.p. 54-56 
0
C; 

1
H NMR (500 MHz, DMSO-

d6) δ (ppm): 7.52 (s, 1H), 3.19-3.16 (m, 2H), 2.21 (t, 2H), 1.72-1.60 (m, 4H). 
13

C NMR 

(125 MHz, DMSO-d6) δ (ppm): 172.9, 42.0, 31.4, 22.1, 20.8 
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5.5 Spectral data of few products 

 

 

Figure 5.3 
1
H and 

13
C NMR of benzamide (3a) 
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Figure 5.4 
1
H and 

13
C NMR of N-Phenylacetamide (3k) 
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Figure 5.5 
1
 H and 

13 
C NMR of N-(4-Hydroxyphenyl)acetamide (3m) 
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