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3.1 Introduction 

Nitrogen and sulphur containing heterocycles such as benzimidazole, benzothiazole 

and there derivatives occupy an important place in both medicinal and industrial chemistry 

for human welfare (Kanwal et al. 2019, Prajapati et al. 2014). These compounds play an 

important role in the metabolism of all living cells. Benzimidazole and benzothiazole 

derivatives exhibit numerous significant in biological activities such as antiallergic (Nakano 

et al. 2000), anticancer (Azam et al. 2015), antimicrobial (Pawar et al. 2004), antiulcer 

(Patil et al. 2008), antifungal (Shi et al. 2019), antihistaminic (Mavrova et al. 2007), 

antiviral (Budow et al. 2009), anti-inflammatory (Lazer et al. 1987), antihypertensive 

(Kubo et al. 1993), antidiabetic (Vinodkumar et al. 2008), anti HIV (Roth et al. 1997), 

antiprotozoal (Navarrete-Vázquez et al. 2001), anti-hepatitis B virus (Li et al. 2006), anti-

tumor (Denny et al. 1990), anti-oxidant (Kus et al. 2004) and antitrichinellosis activity 

(Mavrova et al. 2010) (Figure 3.1). Moreover, these derivatives have remarkable 

applications in material science, polymer and dye synthesis (Berrada et al. 2002) and also 

found pervasive application in fluorescence (Shao et al. 2009), chemosensing (Singh et al. 

2007), crystal engineering (Li et al. 2007) and corrosion science (Roque et al. 2008). 
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Figure 3.1 Some pharmacologically active benzimidazole and benzothiazole compounds 

Several distinctive synthetic methods have been reported for achieving 

benzimidazoles and benzothiazoles due to their wide range of applications in organic 

chemistry as intermediates and ligands for the asymmetric catalysis. Traditionally, these 

fused heterocycles have been synthesized by the condensation of aldehydes with                

o-phenylenediamine/ 2-aminothiophenol in the presence of different catalysts and oxidants 

like K-10 (Landge et al. 2008), I2 (Aniket et al. 2015), glycerol (Radatz et al. 2011), PEG-

400 (Mekala et al. 2015), lactic acid (Yu et al. 2016), glyoxylic acid (Pawar et al. 2008), 

thiamine hydrochloride (Lei et al. 2012), FeCl3 (Liu et al. 2012), FePO4 (Behbahani et al. 

2012), SnP2O7 (Merroun et al. 2019), NH4Fe(SO4)2 (Khazaei et al. 2016), NiCl2 (Bera et al. 

2019), P2O5/SiO2 (Shaterian et al. 2011), Indion 190 Resin (Reddy et al. 2011), 

NiFe2O4@SiO2@amino glucose (Fekri et al. 2018), nano In2O3 (Santra et al. 2012),  Ir/TiO2 

(Fukutake et al. 2018), Zn-Proline (Ravi et al. 2007), ZnO (Sharma et al. 2015), Cu/Al2O3 
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(Pogula et al. 2017), LnCl3 (Zhang et al. 2012), SnCl4 (Mirjalili et al. 2019), Er(OTf)3 

(Cano et al. 2016), MnO2/ZrCl4 (Wang et al. 2014), UiO-66-NHSO3H (Homaee et al. 

2019), laccase (Maphupha et al. 2018), SDS micelles (Bahrami et al. 2010), ZrO2-b-

cyclodextrin (Girish et al. 2015), Cu(I) glycosyltriazole (Mishra et al. 2019), TAP-Cu (Xu 

et al. 2017), silica@ytterbium (Samanta et al. 2018), chitosan@Fe3O4 (Maleki et al. 2014) 

and natural wool@Fe2O4 nanoparticles (Shaabani et al. 2017). Bose et. al., have reported 

synthesis of 1,2-disubstituted benzimidazoles via an intramolecular C(sp3)–H imination 

with PhI– mCPBA (Bose et al. 2019) and Chopra et. al., have reported visible light 

promoted synthesis of 2-substituted benzimidazole (Chopra et al. 2019). Recently the 

formation of 2-substituted, 1,2-disubstituted benzimidazoles from o-phenylenediamine and  

alcohol using manganese catalyst in  strong basic medium have been reported by Srimani 

and coworkers (Das et al. 2018). Most of these existing methods require metal catalysts, 

bases, solvents, stoichiometric amount of oxidants, higher reaction temperature and longer 

reaction time etc. However green sustainable method for selective synthesis of                 

1,2-disubstituted benzimidazoles and 2-substituted benzimidazoles/ benzothiazoles is 

highly desirable. 

UHP is a white crystalline solid, soluble in water, stable at room temperature and 

easy to handle. UHP is an important oxidizing reagent widely used in various organic 

transformations such as synthesis of amides by the hydrolysis of cyano group, epoxidation 

of double bond, thiols to disulfides, secondary alcohols to ketones, sulfides to sulfoxides 
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and sulfones, pyridine to pyridine-N-oxide. Dakin and Baeyer–Villiger oxidation reaction 

was also carried out in the presence of UHP as well as chemoselective ipso- hydroxylation 

of arylboronic acids (Laha et al. 2001, Varma et al. 1999, Marcantoni et al. 1995, Gupta et 

al. 2016).  

Green chemistry has become an important tool in the field of synthetic organic 

chemistry. In organic synthesis transition metal catalysts and volatile organic solvents are 

replaced by green catalysts and solvents like water, ionic liquids, bio-based green solvents 

(poly ethylene glycol and glycerol), supercritical carbon dioxide or reaction in solvent free 

condition (Singh et al. 2016, Datta et al. 2012, Mohira et al. 2019). Reactions in neat 

condition (i.e in solid state) are ideal because solvent free condition reduces environmental 

pollution and cost of the solvents. Alternative energy source for the chemical reactions is 

another concern of green chemistry, utilization of non-classical energy sources such as 

mechanochemical ball milling technique, ultrasound, microwave irradiation and UV light 

radiation in order to save energy and time. In grinding method reaction starts with the 

transfer of the very small amount of mechanical energy which is generated by grinding the 

reactants in a mortar and pestle in solvent free condition and leads to the formation of the 

product. Since it has several advantages in terms of environmental impact, effectiveness, 

requires no special apparatus, cost of solvents & energy sources and easiness of the reaction 

protocol (Hematinezhad et al. 2019, Zangade et al. 2019, Abdelrazek et al. 2019). 

Methyl arenes are naturally available cheap and abundant starting materials used in 

the development of organic transformations. Fundamental challenges in the oxidation of 
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methyl arenes which involves C-H bond activation. Chemoselective oxidation of toluene 

under controlled reaction conditions is still challenging because different oxidized products 

are formed like benzyl alcohol, benzaldehyde and benzoic acid but under harsh reaction 

conditions it gave over oxidized product benzoic acid. These are very important starting 

material in synthetic organic chemistry and industrial point of view (Mahyari et al. 2014, 

Gaster et al. 2017, Shaabani et al. 2008).  

In continuation of our efforts towards development of simple, eco-friendly reaction 

protocols for organic transformations (Verma et al. 2019, Chauhan et al. 2018),  here we 

report a practical and sustainable protocol for the chemoselective synthesis of                      

1,2–disubstituted benzimidazoles, 2-substituted benzimidazoles/ benzothiazoles by urea 

hydrogen peroxide complex (UHP) initiated oxidative coupling of methyl arenes              

with o-phenylenediamine/ 2-aminothiophenol in one pot by varying reaction parameters. 

To the best of our knowledge synthesis of these fused heterocycles directly from methyl 

arenes and 1,2-diaminebenzene/ 2-aminothiphenol in the presence of UHP by oxidative 

coupling has not been reported. A comparison of the previous and present methodologies is 

illustrated in Scheme 3.1. 
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Previous approaches 

 

Present approach 

 

 

 

 

 

 

 

Scheme 3.1 An illustration of the previous and present reports for the synthesis of                      

1,2-disubstituted benzimidazole and 2- substituted benzimidazole/ benzothiazoles derivatives. 

3 mmol, UHP 
Grinding 

4 mmol, UHP 
Heating,  

Solvent-free (4a-s) 

(3a-l) 
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3.2 Results and discussion 

3.2.1 Optimization of Reaction Conditions 

To optimize the reaction conditions for the synthesis of 1,2-disubstituted 

benzimidazoles and 2-substituted benzimidazoles a model reaction was carried out using 

toluene 1a (2.0 mmol) and o-phenylenediamine 2 (1.0 mmol) in the presence of UHP (2.0 

mmol). Various reaction parameters were optimized like solvent, amount of UHP, reaction 

temperature on the model reaction. 

At the outset, the optimization experiments were carried out with the model reaction 

at room temperature by stirring in different polar and non-polar solvents and the progress of 

the reaction was monitored by TLC. Non-polar solvents (xylene, toluene) gave negligible 

amount of product even after 2h stirring at room temperature (Table 3.1, entry 1 and 2). 

However polar aprotic solvents like tetrahydrofuran, chloroform, acetonitrile and 1,4-

dioxane gave the product (3a) but the yield was very low (15-20%) (Table 3.1, entries 3-

6). However polar protic solvents like water, methanol and ethanol also gave desired 

product in better yield (30-40%) (Table 3.1, entries 7-9). In order to improve the yield of 

the product an attempt was made under grinding in solvent-free condition to our surprise it 

gave 70% yield of product in shorter reaction time 25 min (Table 3.1, entry 10). 

Furthermore, UHP loading was also investigated with 0, 3, 6, 8 mmol, without UHP no 

product was obtained, with 3 equiv. of UHP it gave 92 % yield (Table 3.1, entries 11-15) 

while further increasing the amount of the UHP did not increase the % yield of the product 

in all cases it gave exclusively 1,2-disubstituted benzimidazoles. In case of grinding at 
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room temperature the molar ratio of the reactants were also varied by taking 1 mmol of 

toluene and 1 or 2 mmoles of o-phenylenediamine with UHP gave only 1,2-disubstituted 

benzimidazole. 

Table 3.1 Optimization of reaction conditions for the synthesis of 1,2-disubstituted 

benzimidazole
a
 

 

S. No Solvent
b 

UHP (mmol) Reaction Condition at 

rt 

Time (min) Yield 

[%]
 c
 

1 Benzene 2 Stirring 120 10 

2 Toluene 2 Stirring 120 10 

3 THF 2 Stirring 120 15 

4 CHCl3 2 Stirring 120 20 

5 CH3CN 2 Stirring 120 15 

6 1, 4 dioxin 2 Stirring 120 20 

7 Water 2 Stirring 60 40 

8 Methanol 2 Stirring 60 30 

9 Ethanol 2 Stirring 60 40 

10 Solvent-free 2 Grinding 25 70 
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11 Solvent-free - Grinding 25 NR 

12 Solvent-free 3 Grinding 25 92 

13 Solvent-free 6 Grinding 25 92 

14 Solvent-free 8 Grinding 25 92 

15 Solvent-free 3 Grinding 40 92 

a
Reaction conditions: Toluene 1a (2.0 mmol), o-phenylenediamine 2 (1.0 mmol) and UHP at room 

temperature.  
b
 2 mL solvent,  

c 
% isolated yield . 

 

So the optimal conditions for chemoselective synthesis of 1,2-disubstituted 

benzimidazole are toluene (2.0 mmol), o-phenylenediamine (1.0 mmol) and UHP (3.0 

mmol) under grinding at room temperature in solvent-free condition. The product (3a) was 

characterized by spectral data (IR,
 1

H, 
13

C NMR) and confirmed by comparing with the 

reported. 

3.2.2 Substrates Scope for 1,2-disubstituted benzimidazoles 

After finding the optimized reaction conditions (Table 3.1, entry 12), a variety of 

methyl arenes containing electron donating groups like 4- methoxy, 4-N,N- dimethyl, 3,4- 

dimethoxy, 2- hydroxyl as well as electron withdrawing groups such as 2-chloro, 3-chloro, 

4-bromo and 4-flouro with o-phenylenediamine were used to explore the generality and 

substrate scope of this protocol. Toluene (1a), 1-methoxy-4-methylbenzene (1b), N,N,4-

trimethylaniline (1c), 1,2-dimethoxy-4-methylbenzene (1d), o-cresol (1e), 1-chloro-3-

methylbenzene (1f), 1-chloro-2-methylbenzene (1g), 1-bromo-4-methylbenzene (1h),          
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1-fluoro-4-methylbenzene (1i), 2-methylnaphthalene (1j), 2-methylfuran (1k),                    

2-methylpyridine (1l) with o-phenylenediamine (2) gave compound (3)  viz. 1-benzyl-2-

phenyl-1H-benzo[d]imidazole (3a), 1-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1H-

benzo[d]imidazole (3b), 4-(1-(4-(dimethylamino)benzyl)-1H-benzo[d]imidazol-2-yl)-N,N-

dimethylaniline (3c), 1-(3,4-dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)-1H-

benzo[d]imidazole (3d), 2-(1-(2-hydroxybenzyl)-1H-benzo[d]imidazol-2-yl)phenol (3e),  

1-(3-chlorobenzyl)-2-(3-chlorophenyl)-1H-benzo[d]imidazole (3f), 1-(2-chlorobenzyl)-2-

(2-chlorophenyl)-1H-benzo[d]imidazole  (3g), 1-(4-bromobenzyl)-2-(4-bromophenyl)-1H-

benzo[d]imidazole (3h), 1-(4-fluorobenzyl)-2-(4-fluorophenyl)-1H-benzo[d]imidazole (3i), 

2-(naphthalen-2-yl)-1-(naphthalen-2-ylmethyl)-1H-benzo[d]imidazole (3j), 2-(furan-2-yl)-

1-(furan-2-ylmethyl)-1H-benzo[d]imidazole (3k) and 2-(pyridin-2-yl)-1-(pyridin-2-

ylmethyl)-1H-benzo[d]imidazole (3l) in good to excellent yield (86-94%) in shorter 

reaction time (20-30 min). The chemical structures of the synthesized compounds were 

established from their spectral data. The structure of the products along with their reaction 

time and yields are summarized in (Table 3.2).  

To our delight the present method is compatible with a wide range of functional 

groups and the nature of the functional group does not affect the yield of the reaction. 

When o-aminothiophenol was treated with toluene under the same optimized condition no 

product, i.e. 1,2- benzothiazole was obtained while starting material was remained as such.  
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Table 3.2 Synthesis of 1,2-disubstituted benzoimidazoles (3a-l) 
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a
Reaction conditions: Toluene derivatives 1a-l (2 mmol) , o-phenylenediamine 2 (1.0 mmol) and  of UHP (3 

mmol ) were grinded in solvent free condition at room temperature .
 b
 % yield 

 

In order to obtain 2-substituted benzimidazole the model reaction was grinded with 

higher amounts of UHP and also for longer time up to 60 min but exclusively 1,2-

disubsituted benzimidazole was obtained. UHP shows very interesting results by varying 

reaction temperature and amount of the oxidant in solvent-free condition. Model reaction 

mixture was stirred with 3 mmol of UHP at room temperature but no product was obtained 

while starting material was remained as such (Table 3.3, entry 1). As temperature of the 

reaction increases, yield of 3a decreases while yield of 4a increases. The reaction 

temperature was increased up to 100 
0
C with 3 mmol of UHP it gave a mixture of 3a and 4a 

(Table 3.3, entries 2-6). The reaction was also carried out with different loading of UHP 

(4-6 mmol) at 80 
0
C, with 4 mmol of the UHP, exclusively 2-substituted benzimidazole  4a 

was obtained in 92% yield (Table 3.3, entry 7). Further increase in UHP amount by 6 

mmol there is no improvement in % yield of 4a (Table 3.3, entry 8) and at higher 

temperature 100 
0
C with 4 mmol of UHP no significant improvement in the % yield of 4a 
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was obtained (Table 3.3, entry 9). The product (4a) was characterized by spectral data (IR,
 

1
H, 

13
C NMR) and confirmed by comparing with the reported.  

Table 3.3 Effect of temperature and amount of the oxidant on the model reaction 

 

S. No Oxidant (UHP) Temperature (

C) Product (3a)

b
 Product (4a)

c
 

1 3 mmol RT NR NR 

2 3 mmol 50 60 30 

3 3 mmol 60 45 43 

4 3 mmol 70 32 58 

5 3 mmol 80 15 72 

6 3 mmol 100 12 76 

7 4 mmol 80 - 92 

8 6 mmol 80 - 92 

9 4 mmol 100 - 92 

a
Reaction conditions: Toluene 1(1.0 mmol), o-phenylenediamine 2 (1.0 mmol) and UHP were treated at 

different temperature without solvent. 
b
 % yield of 3a. 

c
 % yield of 4a. 
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So the optimized conditions for chemoselective synthesis of 2-phenylbenzimidazole 

is toluene (1 mmol), o-phenylenediamine (1.0 mmol) and UHP (4.0 mmol) at 80 
0
C in 

solvent-free condition (Table 3.2, entry 7).  

3.2.3 Substrates Scope for 2-substituted benzimidazole/ benzothiazoles 

Having been encouraged by the observation, we extended the synthesis of                  

2-substituted benzimidazoles/ benzothiazoles by using different methyl arene derivatives 

with 1,2-diaminobenzene/ 2-aminothiophenol. All methyl arenes carrying either electron 

donating (methoxy, methyl, N,N dimethyl) or electron-withdrawing (nitro, chloro, fluoro, 

bromo) gave chemoselective 2-substituted benzimidazoles like 2-phenyl-1H-

benzo[d]imidazole (4a), 2-(1H-benzo[d]imidazol-2-yl)-3-bromophenol (4b), 2-(4-

nitrophenyl)-1H-benzo[d]imidazole (4c), 2-(4-chlorophenyl)-1H-benzo[d]imidazole (4d), 

2-(4-bromophenyl)-1H-benzo[d]imidazole (4e), 2-(4-fluorophenyl)-1H-benzo[d]imidazole 

(4f), 2-(naphthalen-2-yl)-1H-benzo[d]imidazole (4g) and 2-(pyridin-2-yl)-1H-

benzo[d]imidazole (4h). Under the same optimized condition 2-substituted benzothiazoles 

also achieved in excellent yield. Methyl arenes derivatives and  2-aminothiophenol gave 

benzothiazole derivatives viz 2-phenylbenzo[d]thaizole (4i), 2-(4-

methoxyphenyl)benzo[d]thaizole (4j), 4-(benzo[d]thiazol-2-yl)-N,N-dimethylaniline (4k), 

2-(3,4 dimethoxyphenyl)benzo[d]thaizole (4l), 2-(4-nitrophenyl)benzo[d]thaizole (4m),   2-

(4-bromophenyl)benzo[d]thaizole (4n), 2-(4-chlorophenyl)benzo[d]thaizole (4o), 2-(4-

fluorophenyl)benzo[d]thaizole (4p), 2-(naphthalen-2-yl)benzo[d]thaizole (4q), 2-(furan-2-
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yl)benzo[d]thaizole (4r) and 2-(pyridin-2-yl)benzo[d]thaizole (4s) in good to excellent 

yield (Table 3.4). 2-Aminothiophenol gave excellent yield in shorter reaction time than       

o-phenylenediamine because sulfur is more nucleophile than nitrogen atom.   

Table 3.4 Synthesis of 2- substituted benzoheterocycles (4a-s)  
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a
Reaction conditions toluene derivatives 1a-o (1 mmol) o-phenylenediamine or o-aminothiophenol 2             

(1 mmol) and  UHP (4 mmol) were fused at 80 
0
C. 

b 
% yield of the reaction 

 

 

3.3 Controlled Experiments and Mechanistic studies 

In order to establish the reaction mechanism, some controlled experiments were 

performed, when the model reaction was carried in the presence of UHP (3 mmol) under 

grinding condition with radical scavenger 1,4-benzoquinone (Zhao et al. 2018) (3 mmol), 

only 10% of the desired product (3a) (Scheme 3.2) was obtained. This observation shows 

that the reaction proceeds through radical pathway. When toluene (1.0 mmol), alone was 

treated with UHP (3.0 mmol) under grinding at room temperature it gave selectively 

benzaldehyde. 
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Scheme 3.2 Control experiment using benzoquinone as radical trapping agents 

In order to investigate the role of UHP in condensation reaction a controlled 

experiment was performed by the reaction of benzaldehyde with o-phenylenediamine under 

grinding in the absence of UHP at room temperature. This reaction did not provide the 

desired product even after 2 hrs (Scheme 3.3, A). When the same reaction was carried out 

in the presence of UHP it gave the product (3a) in 94% yield (Scheme 3.3, B). In fact, not 

only benzaldehyde, but also many other substituted benzaldehydes underwent condensation 

with o-phenylenediamine (2) and provided products in good yields (Table 3.5). These 

results show that UHP taking part not only in the oxidation of methyl arenes to aldehyde 

but also in the cyclization step.   

 

Scheme 3.3 Controlled experiment with and without UHP 
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Table 3.5 Conversion of aldehyde derivatives into corresponding 1,2-disubstituted 

benzimidazoles. 

 

 a
Reaction condition benzaldehyde derivatives (1.0 mmol), o-phenylenediamine (1.0 mmol) and  UHP           

(3 mmol) were grinded at room temperature. .
b 
% yield of the product.  

 

3.3.1 Plausible Reaction Mechanism 

A proposed mechanism for the synthesis of 1,2-disubstituted benzimidazole is 

shown in Figure 3.2. In the initial step, decomposition of UHP gives hydrogen peroxide 

and urea. Hydrogen peroxide gives radical path for the oxidation of methyl arenes via 

hydroxyl radical (HO
•
). After oxidation, aldehyde (A) undergoes condensation reaction 

with o-phenylenediamine and forms diamine (B). Intra molecular cyclization followed by 

1, 3 hydride shift (C) affords final product (3). Reaction mechanism for 2-substituted 

benzimidazole, in initial step aldehyde derivatives react with OH radical give acid 

derivatives (D) which undergoes condensation reaction with o-phenylenediamine to form 

amine (E) and intra molecular cyclization affords product (4). The formation of reaction 

intermediate aldehyde derivative (A) and benzoic acid derivative (D) were confirmed
              

1
H NMR and 

13
C NMR. 

When toluene (1.0 mmol) alone was treated with UHP (3.0 mmol) at 80 
0
C it gave 

completely benzoic acid. To understand the path of the reaction and the role of UHP in the 
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synthesis of 2-substituted benzimidazole, controlled experiments were performed by the 

reaction of benzoic acid with o-phenylenediamine at 80 
0
C in the absence of UHP at room 

temperature. This reaction did not provide the desired product even after 2 hrs (Scheme 

3.4, A). When the same reaction was carried out in the presence of UHP it gave the product 

(4a) in 96 % yield (Scheme 3.6, B). In fact, not only benzoic acid, but also many other 

substituted benzoic acid underwent condensation with o-phenylenediamine (2) and 

provided products in good yields (Table 3.6). These results show that UHP taking part not 

only in the oxidation of methyl arenes to benzoic acid but also in the cyclization step.   

 

Scheme 3.4 Controlled experiment with and without UHP 

Table 3.6 Conversion of benzoic acid derivatives into corresponding 2-substituted 

benzimidazoles 

 

Reaction conditions: Benzoic acid derivatives (1.0 mmol), o-phenylenediamine (1.0 mmol) and UHP were 

fused at 80
0
C,  

b 
% yield of the product. 

 

 



                                                                                             Chapter 3 

 

Department of Chemistry IIT (BHU), Varanasi  Page 102 
 

 

Figure 3.2 Proposed mechanism for the formation of 1,2-disubstituted benzimidazoles and 

2-substituted benzimidazoles 
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3.4 Gram-scale synthesis of 1,2-disubstituted benzimidazoles and               

2-substituted benzimidazoles 

To establish the potential synthetic application of this methodology the synthesis of            

1-benzyl-2-phenyl-1H-benzo[d]imidazole (3a) was carried out on gram scale with toluene 

(1a) (2.13 mL, 20 mmol) and o-phenylenediamine (2) (1 g, 10 mmol) using of UHP            

(3 mmol) under optimized reaction conditions it gave desired products (3a) in 90% yield 

(5.2 g). 2-Phenyl-1H-benzo[d]imidazole (4a) was also synthesized on gram scale toluene 

(1a) (2.13 mL, 20 mmol), o- phenylenediamine (2) (2 g, 20 mmol) and 4 mmol of UHP at 

80 
0
C without solvent, gave 88 % (4.98 g) yield of (4a). 

3. 5 Experimental Section 

3.5.1 General Procedure for the Synthesis of 1,2-Disubstituted Benzimidazole (3a-3l) 

A mixture of appropriate methyl arene derivatives (2.0 mmol), o-phenylenediamine  

(1.0 mmol) and UHP (3.0 mmol) were taken in mortar and pestle and ground continuously 

for appropriate time. The progress of the reaction was monitored by TLC. After completion 

of the reaction, mixture was diluted with ethyl acetate and washed with water. The organic 

layer was dried over anhydrous sodium sulfate (Na2SO4), evaporated under reduced 

pressure and purified by column chromatography over silica gel (60-120 mesh) with ethyl 

acetate/hexane solvent system to obtain pure desired products.  
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3.5.2 General Procedure for the Synthesis of 2-substituted benzimidazoles and 

benzothiazoles (4a-4s) 

o-Phenylenediamine (1.0 mmol), methyl arenes (1.0 mmol) and UHP (4 mmol) 

were heated at 80 
0
C in solvent-free condition. The progress of the reaction was monitored 

by TLC. After completion of the reaction, mixture was diluted with ethyl acetate and 

washed with water. The organic layer was dried over anhydrous sodium sulfate (Na2SO4), 

evaporated under reduced pressure and purified by column chromatography over silica gel 

(60-120 mesh) with ethyl acetate/hexane solvent system to obtain pure desired products. 

The 
1
H NMR and 

13
C NMR of the 1,2-disubstituted benzimidazoles and                        

2-substituted benzimidazoles/ benzothiazoles were compared with literature reports. 

3.6  Analytical data  

3.6.1 Analytical data of 1,2-disubstituted benzimidazoles and 2-disubstituted 

benzimidazoles/ benzothiazoles 

1-benzyl-2-phenyl-1H-benzo[d]imidazole (3a) Yield 92%; White powder; m.p. 132-133 

°C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.81-7.79 (d, 2H), 7.63-7.61(d, 2H), 7.40- 7.37 

(t, 3H), 7.27-7.22 (m, 4H), 7.18-7.13 (m, 2H) , 7.04-7.02 (d, 2H), 5.39 (s, 2H); 
13

C NMR 

(125 MHz, CDCl3) δ (ppm): 154.22, 143.20, 136.40, 136.06, 130.11, 129.88, 129.26, 

129.04, 128.72, 127.76, 125.97, 123.01, 122.65, 120.00, 110.38, 48.28. 

1-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1H-benzo[d]imidazole (3b) Yield 90%; 

White powder; m.p. 128-130 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.78- 7.77 (d, 1H), 
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7.58- 7.56 (d, 2H), 7.22-7.21 (d, 1H), 7.15- 7.14 (d, 2H) 6.97-6.96 (d, 2H)  6.91-6.89 (d, 

2H), 6.79-6.78 (d, 2H), 5.32 (s, 2H) 3.78 (s, 3H) 3.72 (s, 3H); 
13

C NMR (125 MHz, CDCl3) 

δ (ppm): 160.86, 159.00, 153.99, 142.93, 135.89, 130.69, 128.35, 127.20, 122.71, 122.50, 

122.40, 119.65, 114.41, 114.17, 110.34, 55.35, 55.27, 47.87. 

4-(1-(4-(dimethylamino)benzyl)-1H-benzo[d]imidazol-2-yl)-N,N-dimethylaniline (3c) 

Yield 93%; Yellow powder; m.p. 255 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.84-7.83 

(d, 1H), 7.66-7.64 (d, 2H), 7.29-7.26 (t, 1H), 7.22-7.19 (t, 2H), 7.05-7.03 (d, 2H), 6.76-6.75 

(d, 2H), 6.71-6.69 (d, 2H), 5.39 (s, 2H), 3.03 (s, 6H), 2.95 (s, 6H); 
13

C NMR (125 MHz, 

CDCl3) δ (ppm): 151.21, 149.97, 143.20, 130.30, 126.92, 124.30, 122.15, 119.21, 112.79, 

111.80, 110.37, 48.05, 40.52, 40.18. 

1-(3,4-dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)-1H-benzo[d]imidazole (3d) Yield 

94%; White powder; m.p. 174-175 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.86-7.85 (d, 

2H), 7.38-7.28 (m, 6H), 6.93-6.91 (d, 1H), 6.81-6.80 (d, 1H), 6.66 (s, 1H), 5.40 (s, 2H), 

3.92 (s, 3H), 3.85 (s, 3H), 3.78 (s, 3H), 3.77(s, 3H); 
13

C NMR (125 MHz, CDCl3) δ (ppm):  

154.12, 150.50, 149.53, 149.11, 148.58, 136.32, 129.11, 122.91, 122.66, 121.86, 119.78, 

118.12, 112.36, 111.54, 110.99, 110.26, 109.04, 55.98, 55.96, 55.92, 55.86, 48.17. 

2-(1-(2-hydroxybenzyl)-1H-benzo[d]imidazol-2-yl)phenol (3e) Yield 89%; White 

powder; m.p. 210-212 °C; 
1
H NMR (500 MHz, DMSO) δ (ppm): 9.48 (s, 1H), 7.69-7.67 

(d, 1H), 7.55-7.54 (d, 1H), 7.37-7.35 (d, 1H), 7.23-7.18 (m, 2H), 7.05-7.02 (t, 3H) 6.99-

6.97 (d, 1H), 6.89-6.87 (d, 1H), 6.74- 6.71 (t, 1H), 6.61-6.58 (t, 1H),  6.55-6.53 (d, 1H), 

5.49 (s, 2H); 
13

C NMR (125 MHz, DMSO) δ (ppm):157.71, 153.80, 151.25, 139.72, 
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134.74, 130.52, 127.94, 126.88, 125.54, 121.65, 118.74, 117.72, 117.15, 114.57, 112.50, 

109.60, 44.30. 

1-(2-chlorobenzyl)-2-(2-chlorophenyl)-1H-benzo[d]imidazole (3f) Yield 87%; White 

powder; m.p. 159-160 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 8.43-841 (d, 2H), 7.90-

788 (d, 1H), 7.51( m, 2H), 7.43 (m,2H), 7.34 (m, 2H), 7.32 (m, 2H), 7.27 (s, 2H), 6.65 (s, 

1H), 5.37 (s, 2H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 151.50, 149.00, 143.04, 132.09, 

129.88, 129.56, 128.95, 127.73, 127.09, 123.09, 123.35, 122.69, 120.33, 110.50, 45.68. 

1-(3-chlorobenzyl)-2-(3-chlorophenyl)-1H-benzo[d]imidazole (3g) Yield 88%; White 

powder; m.p. 202-204 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.93-7.91 (d, 1H), 7.73- 

7.71 (m, 2H), 7.49 -7.47 (t, 3H), 7.36-7.33 (m, 4H), 7.27–7.24 (m, 2H), 7.14-7.12 (d, 2H), 

5.48 (s, 2H); 
13

C NMR (126 MHz, CDCl3) δ (ppm): 154.08, 142.98, 136.40, 136.04, 

130.03, 129.96, 129.31, 129.08, 128.78, 127.81, 126.00, 123.09, 122.74, 120.00, 110.56, 

77.31, 77.06, 76.81, 48.51. 

1-(4-bromobenzyl)-2-(4-bromophenyl)-1H-benzo[d]imidazole (3h) Yield 86%; White 

powder; m.p. 160-162 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.87 (d, 1H), 7.60 (d, 2H), 

7.52 (d, 2H), 7.46 (d, 2H), 7.33 (t, 1H), 7.26 (d, 1H), 7.19 (d, 1H), 6.96 (d, 2H), 5.37 (s, 

2H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 152.91, 143.13, 135.89, 132.33, 130.52, 

128.84, 127.48, 123.06, 121.90, 120.22, 110.27, 47.84. 

1-Benzyl-5-fluoro-2-phenyl-1 H-benzo[d]imidazole (3i) Yield 88%; White powder; m.p. 

110-112 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 8.10-8.07 (m, 2H), 7.65-7.63 (d, 3H), 

7.27-7.26 (t, 3H), 7.26-715 (m, 4H), 5.40 (s, 2H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 
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164.73, 162.77, 161.32, 153.08, 143.09, 135.90, 131.25, 127.66, 126.20, 123.23, 120.10, 

116, 110.30, 47.72. 

2-(naphthalen-2-yl)-1-(naphthalen-2-ylmethyl)-1H-benzo[d]imidazole (3j) Yield 91%; 

White powder; m.p. 124-125 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.92 (d, 2H), 7.72 

(d, 4H), 7.49 (s, 4H), 7.34 (s, 4H), 7.25 (d, 3H), 7.13 (d, 3H), 5.48 (s, 2H); 
13

C NMR (125 

MHz, CDCl3) δ (ppm): 154.14, 143.04, 136.34, 135.98, 129.90, 129.25, 129.02, 128.72, 

127.75, 125.94, 123.03, 122.68, 119.94, 110.50, 48.34. 

2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzo[d]imidazole (3k) Yield 89%; White 

powder; m.p. 88-89 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.79-7.77 (d, 1H), 7.64 (s, 

1H), 7.50-7.48 (t, 2H), 7.32-7.28 (m, 2H),  7.22- 7.21 (d, 1H), 6.60 (s, 1H), 6.27-6.23 (d, 

2H), 5.63 (s, 2H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 149.54, 145.34, 143.90, 142.91, 

142.60, 135.43, 123.19, 122.87, 119.75, 112.86, 112.01, 110.47, 109.94, 108.31, 41.62. 

2-(pyridin-4-yl)-1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole (3l) Yield 88%; Yellow 

powder; m.p. 293-294 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.93-7.91 (d, 1H), 7.73-

7.71 (d, 2H), 7.50-7.46 (m, 3H), 7.36-7.33 (t, 2H), 7.27-7.25(t, 2H), 7.14-7.12 (t, 2H), 5.48 

(s, 2H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 143.00, 138.34, 134.82, 133.99, 130.53, 

130.36, 129.87, 127.46, 126.30, 126.03, 125.62, 122.85, 122.36, 110.50, 45.58. 

2-phenyl-1H-benzo[d]imidazole (4a) Yield 92%; Yellow powder; m.p. 293-294 °C;
               

1
H NMR (500 MHz, DMSO-d6) δ (ppm): 12.92 (s, 1H), 8.19 -8.18 (d, 2H), 7.67 (s, 1H), 

7.57-7.54 (t, 3H), 7.50-7.47 (t, 1H), 7.21 (s, 2H); 
13

C NMR (125 MHz, DMSO-d6) δ (ppm):   

150.75, 143.32, 134.51, 129.37, 128.47, 125.95, 122.07, 121.22, 118.36, 110.83. 
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2-(1H-benzo[d]imidazol-2-yl)-3-bromophenol (4b) Yield 85%; Yellow powder; m.p.     

252-254 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 13.04 (s, 1H), 8.56 (s, 1H), 7.50 (d, 

2H), 7.44 (d, 1H), 7.38-7.37 (s, 1H), 7.26 (s, 1H), 6.96-6.94 (d, 2H); 
13

C NMR (125 MHz, 

CDCl3) δ (ppm): 162.32, 160.30, 141.99, 136.03, 134.25, 128.25, 120.51, 119.54, 110.48, 

2-(4-nitrophenyl)-1H-benzo[d]imidazole (4c) Yield 87%; Yellow powder; m.p. >300 °C;  

1
H NMR (500 MHz, DMSO) δ (ppm): 13.28 (s, 1H), 8.41 (s, 4H), 7.66 (d,  2H), 7.26 (d, 

2H); 
13

C NMR (125 MHz, DMSO) δ (ppm): 149.46, 148.27, 144.28, 136.49, 135.53, 

127.85, 124.76, 124.08, 122.79, 119.91, 112.28. 

2-(4-chlorophenyl)-1H-benzo[d]imidazole (4d) Yield 87%; Yellow powder; m.p. > 300 

°C; 
1
H NMR (500 MHz, DMSO) δ (ppm): 12.99 (s, 1H, NH), 8.20-8.18 (d, 2H), 7.64-7.54 

(m, 4H), 7.22-7.12 (d, 2H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 149.62, 143.21, 134.03, 

133.96, 128.54, 127.61, 122.25, 121.33, 118.43, 110.90. 

2-(4-bromophenyl)-1H-benzo[d]imidazole (4e) Yield 87%; Yellow powder; m.p. >300 

°C; 
1
H NMR (500 MHz, DMSO) δ (ppm): 8.43-8.39 (t, 4H), 7.66 (s, 2H), 7.28-7.26 (d, 

2H); 
13

C NMR (125 MHz, DMSO) δ (ppm): 143.30, 132.67, 129.32, 128.68, 125.03, 

118.61.  

2-(4-fluorophenyl)-1H-benzo[d]imidazole (4f) Yield 92%; Yellow powder; m.p. 256-258 

°C;
 1

H NMR (500 MHz, CDCl3 & DMSO) δ (ppm): 8.46 (s, 1H), 8.13-8.12(d, 4H), 7.81-

7.76 (t, 4H); 
13

C NMR (125 MHz, CDCl3 & DMSO) δ (ppm): 150.17, 143.38, 134.64, 

131.21, 128.79, 127.73, 123.20, 122.34, 121.39, 118.47, 110.79. 



                                                                                             Chapter 3 

 

Department of Chemistry IIT (BHU), Varanasi  Page 109 
 

2-(naphthalen-2-yl)-1H-benzo[d]imidazole (4g) Yield 89%; Yellow powder; m.p. 260-

262 °C;
 1

H NMR (500 MHz, DMSO) δ (ppm): 8.81 (s, 1H), 8.39 (s, 1H), 8.26 (d, 1H), 8.00 

(t, 2H), 7.63-7.54 (m, 2H), 7.19 (d, 1H), 6.99 (t, 1H), 6.75 (d, 1H), 6.59 (t, 1H), 5.25 (s, 

1H); 
13

C NMR (125 MHz, DMSO) δ (ppm): 155.69, 143.62, 134.71, 133.93, 133.84, 

132.32, 130.24, 128.16, 127.86, 127.38, 127.24, 127.00, 126.29, 123.42, 116.48, 115.79, 

114.30. 

2-(pyridin-4-yl)-1H-benzo[d]imidazole (4h) Yield 88%; White powder; m.p. 260-262 °C;  

1
H NMR (500 MHz, CDCl3) δ (ppm): 11.33 (s, NH, 1H), 8.66-8.65 (d, 1H), 8.51-8.47 (d, 

1H), 7.91-7.89 (m, 2H), 7.46-7.45 (d,  1H), 7.39-7.38 (d, 1H), 7.31-7.30 (m, 2H); 
13

C NMR 

(125 MHz, CDCl3) δ (ppm): 150.81, 149.05, 148.43, 144.44, 137.42, 124.62, 123.95, 

122.70, 121.81, 120.15, 111.27. 

2-phenylbenzo[d]thaizole (4i) Yield 93%; Yellow powder; m.p. 115-116 °C; 
1
H NMR 

(500 MHz, CDCl3) δ (ppm): 8.05-8.02 (m, 2H), 7.87-85 (d, 1H), 7.45-7.42 (m, 4H), 7.35-

7.32 (t, 1H);
 13

C NMR (125 MHz, CDCl3) δ (ppm): 168.08, 154.18, 154.18, 135.06, 

133.68, 130.98, 129.03, 127.58, 123.26, 125.20, 123.22, 121.63. 

2-(4-methoxyphenyl)benzo[d]thaizole (4j)  Yield 89%; Yellow powder; m.p. 134-125 °C; 

1
H NMR (500 MHz, CDCl3) δ (ppm): 8.06-8.00 (m, 3H), 7.88 (d, 1H), 7.47 (t, 1H), 7.35 (t, 

1H), 7.00 (d, 2H), 3.89 (s, 3H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 167.87, 161.94, 

154.23, 134.86, 129.12, 126.46, 126.19, 124.78, 122.82, 121.50, 114.38, 55.46. 

4-(benzo[d]thiazol-2-yl)-N,N-dimethylaniline (4k)  Yield 86%; Yellow powder; m.p. 

170-171 °C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.97 (t, 3H), 7.84 (d, 1H), 7.43 (t, 1H), 
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7.30 (t, 1H), 6.75 (d, 2H), 3.05 (s, 6H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 167.87, 

161.94, 154.23, 134.86, 129.12, 126.46, 126.19, 124.78, 122.82, 121.50, 114.38, 55.46. 

2-(3,4-dimethoxyphenyl)benzo[d]thaizole (4l) Yield 85%; Yellow powder; m.p. 132-134 

°C; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 7.97 (d, 1H), 7.81 (d, 1H), 7.65 (d, 1H), 7.60 -

7.47 (m, 1H), 7.47-7.36 (m, 1H), 7.34-7.25 (m, 1H), 6.88 (d, 1H), 3.96 (s, 3H), 3.89 (s, 

3H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 167.91, 126.70, 126.25, 124.90, 122.85, 

121.52, 121.16, 111.03, 109.80, 56.11. 

2-(4-nitrophenyl)benzo[d]thaizole (4m) Yield 86%; Yellow powder; m.p. 230-231 °C;            

1
H NMR (500 MHz, CDCl3) δ (ppm): 8.29 (s, 2H), 8.22 (s, 2H), 8.08 (d, 1H), 7.90 (d, 1H), 

7.54-7.44 (m, 1H), 7.44-7.34 (m, 1H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 164.85, 

154.12, 139.19, 135.54, 128.25, 126.92, 126.23, 124.32, 123.94, 121.84. 

2-(4-bromophenyl)benzo[d]thaizole (4n) Yield 88%; Yellow powder; m.p. 132-134 °C;
  

1
H NMR (500 MHz, CDCl3) δ (ppm): 8.01 (d, 1H), 7.90 (d, 2H), 7.85 (d, 1H), 7.60-7.53 

(m, 2H), 7.45 (s, 1H), 7.35 (d, 1H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 166.70, 154.07, 

135.04, 132.55, 132.23, 128.91, 126.50, 125.43, 123.32, 121.66. 

2-(4-chlorophenyl)benzo[d]thaizole (4o) Yield 85%; Yellow powder; m.p. 110-112 °C;  

1
H NMR (500 MHz, CDCl3) δ (ppm): 8.01 (d, 1H), 7.97 (d,  2H), 7.84 (d, 1H), 7.47-7.37 

(m, 3H), 7.34 (t, 1H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 166.60, 154.08, 137.03, 

135.06, 132.13, 129.26, 128.71, 126.47, 125.40, 123.30, 121.64. 

2-(4-fluorophenyl)benzo[d]thaizole (4p) Yield 85%; Yellow powder; m.p. 101-103°C;  

1
H NMR (500 MHz, CDCl3) δ (ppm): 8.02 (d, 3H), 7.84 (d, 1H), 7.44 (t, 1H), 7.33           
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(t, 1H), 7.13 (t, 2H); 
13

C NMR (125 MHz, CDCl3) δ (ppm): 166.73, 165.45, 154.09, 

135.04, 129.51, 126.41, 125.24, 123.18, 121.61, 116.24, 116.07. 

2-(naphthalen-2-yl)benzo[d]thaizole (4q) Yield 90%; Yellow powder; m.p. 123-125 °C; 

1
H NMR (500 MHz, CDCl3) δ (ppm): 8.52 (s, 1H), 8.17-8.15 (m, 1H), 8.07-8.05 (d, 1H), 

7.93-7.82 (m, 4H), 7.51-7.45 (m, 3H), 7.37-7.34 (t, 1H); 
13

C NMR (125 MHz, CDCl3)       

δ (ppm): 168.14, 154.20, 135.16, 134.62, 133.22, 131.00, 128.84, 127.89, 127.61, 127.48, 

126.91, 126.41, 125.22, 123.26, 121.66. 

2-(furan-2-yl)benzo[d]thaizole (4r) Yield 88%; Yellow powder; m.p. 104-105 °C;             

1
H NMR (500 MHz, CDCl3) δ (ppm): 7.99 (d, 1H), 7.83 (d, 1H), 7.60-7.49 (m, 1H), 7.45-

7.38 (m, 1H), 7.34 (s, 1H), 7.13 (d, 1H), 6.54 (d, 1H); 
13

C NMR (125 MHz, CDCl3)            

δ (ppm): 157.57, 153.79, 148.79, 144.70, 134.30, 126.48, 125.20, 123.15, 121.57, 112.53, 

111.42. 

2-(pyridin-2-yl)benzo[d]thaizole (4s) Yield 92%; Yellow powder; m.p. 133-135 °C;         

1
H NMR (500 MHz, CDCl3) δ (ppm): 8.71 (d, 1H), 8.40 (d, 1H), 8.12 (d, 1H), 7.99 (d, 

1H), 7.87 (t, 1H), 7.53 (d, 1H), 7.42 (d, 2H); 
13

C NMR (125 MHz, CDCl3) δ (ppm):  

169.37, 154.27, 151.40, 149.65, 137.00, 136.11, 126.26, 125.63, 125.25, 123.56, 122.00, 

120.75. 
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3.6.2 Spectral data of product (1-benzyl-2-phenyl-1H-benzo[d]imidazole (3a) 

 

Figure 3.3 
1
H NMR of 1-benzyl-2-phenyl-1H-benzo[d]imidazole (3a) 

 

Figure 3.4 
13 

C NMR of 1-benzyl-2-phenyl-1H-benzo[d]imidazole (3a) 
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3.6.3 Spectral data of product 2-phenyl-1H-benzo[d]imidazole (4a) 

 

Figure 3.5 
1
H of 2-phenyl-1H-benzo[d]imidazole  

 

Figure 3.6 
13 

C NMR of 2-phenyl-1H-benzo[d]imidazole  
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