Chapter 2

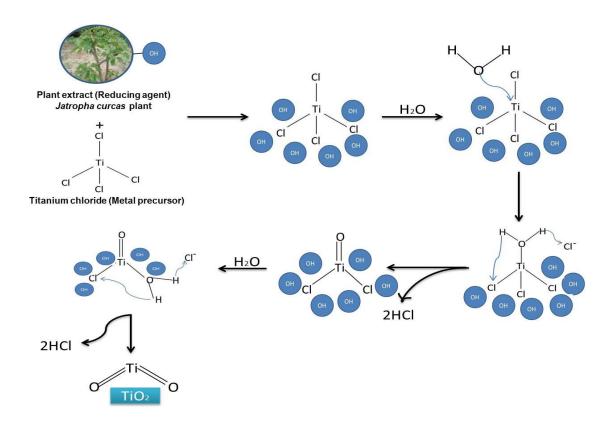
Literature Review

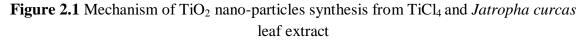
2.1 Introduction

Method of synthesis of nano-particles plays a significant role in deciding their properties. Different approaches used for synthesizing nano-particles can be grouped under two broad groups as top-down approach and bottom-up approach. In the topdown approach several physic-chemical methods are used to convert bulk materials into nano-size particles having large specific surface area and high activity. But the topdown approaches are costly, require large labour, take a lot of time to manufacture and are not eco-friendly. High temperature conditions are required hence not suitable for large-scale production. In case of bottom-up approach molecules are aggregated to large size and the aggregates are stabilized. Compared to the top-down approach, the bottomup approach is simple, need normal conditions of pressure and temperature and is less energy intensive and eco-friendly. Acid precipitation and green synthesis methods are typical examples of bottom-up approach. In green route plant extracts or microorganisms are used to prepare nano-particles by the biological components present in the extract or microbial cells that act as reducing, capping and stabilizing agents in the synthesis process. Under suitable conditions (pH, light wavelength and plant extract/micro-organism) practically most compounds can be reduced and converted to nano-particles. A large variety of nanoparticles having applications in analytical to medical fields have been synthesized using this route and several excellent reviews are available in the literature (Goutam et al., 2018, Rajakumar et al., 2012). As the present work is focused on nano-particles of silica (SiO₂) and titania (TiO₂), in the following sections available information on the synthesis these nano-materials is summarized in the following pages. Available information on the green synthesis using plant extracts, characterization and application of synthesized nano-particles are included in this summary.

2.2 Synthesis of TiO₂ Nano-particles

There are several techniques used for the synthesis of TiO_2 particles and these are basically known as sol-gel (Sugimoto et al., 2002), deposition methods (Chen et al., 2007), sonochemical and microwave-assisted methods (Yu et al., 2001), hydro/solvothermal methods (Kim et al., 2003, Nian et al., 2006) and oxidation methods (Varghese et al., 2003). These methods include costly - toxic chemicals, high temperature and high pressure which make the process complex and less eco-friendly. So green synthesis of nanoparticles using leaves extract is an alternative way to synthesis TiO_2 NPs for various applications.

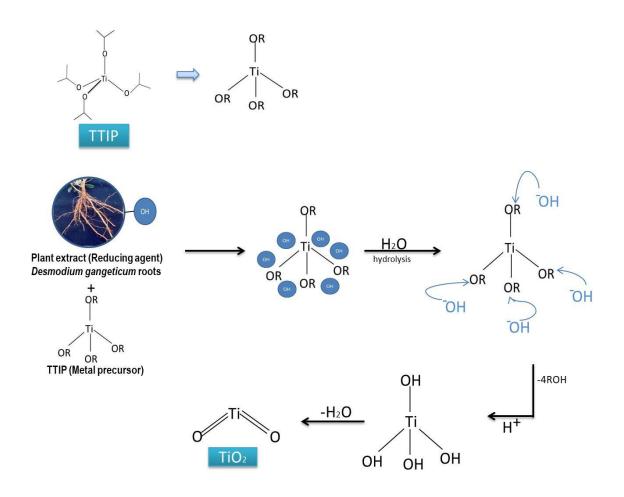

2.3 Green Synthesis of TiO₂ NPs


Herein, a brief and comprehensive study is carried out to understand the mechanism involved for the formation of TiO_2 nanoparticles using different parts of plant and to identify the functional groups present in them that are responsible for green synthesis of TiO_2 nanoparticles.

Green synthesis from plants involves usage of extracts from various plant parts like, root, stem, leaves, fruits, flowers, etc. The bio-molecules present in them helps to synthesize the nano-particles through reduction and stabilization mechanisms. Extracts from various parts of plants have been used. Their advantages and disadvantages are discussed in the following pages.

2.3.1 Leaf Extract

The leaf extract of *Jatropha curcas* (common name: physic nut) was used for the first time to carry out the synthesis of TiO₂ nanoparticles (Goutam et al., 2018), where titanium chloride was used as the precursor. The mixing of *Jatropha curcas* extract and TiCl₄ in 1:1 volume ratio exhibited a colour change from transparent to whitish-brown, due to the reduction of Ti⁴⁺ ions to Ti, which demonstrated the synthesis of TiO₂ nanoparticles. The reduction took place due to the presence of hydroxyl (OH⁻) group (responsible for reduction /capping of Ti⁴⁺ ions) in *Jatropha curcas* leaf, which could be due to the presence of phenols. In the poly-phenolic tannins in *Jatropha curcas* leaf extract, which act as capping agent to cover the surface of TiO₂ nanoparticles to prevent agglomeration. The schematic representation of synthesis mechanism is shown in Figure (2.1).


Rajakumar et al. (2012) used healthy leave of *Eclipta prostrata* (*E. prostrata*), commonly called as false daisy, species of sunflower family to obtain TiO₂ nanoparticles of an average size of 49.5 nm, by an aqueous reduction method. At room temperature, the aqueous leaf extract of *E. prostrata* was added to TiO(OH)₂ under stirring. As the reaction proceeded, the change in colour to light green indicated the synthesis of TiO₂ nanoparticles. It was concluded that the presence of alkanes, phenols, alcohols, primary amines and aliphatic amines in *E. Prostrate* may be assisting in the formation of nanoparticle. Also the existence of water soluble heterocyclic compounds like flavones might have helped in achieving the controlled size of particles by functioning as capping and reducing ligands of the nanoparticles.

Momordica charantia (*M. charantia*), most widely used herbal medicine belongs to Cucurbitaceae family was used by Gandhi et al., 2018 for the synthesis of TiO₂ nanoparticles. They carried out experiment using fresh aqueous extract of *M. charantia* and TiCl₄ solution at ambient temperature and the resulting solution became pink in colour. It was concluded that the involvement of the functional groups namely, hydroxyl groups, amide and amine groups, carboxylic acid group and aliphatic amines in the extract were responsible for the reduction and stabilization of TiO₂ nano-particles. A similar work using leaf-extract of another other medicinal plant was reported in literature (Subhapriya et al., 2018) where extract of healthy leave of *Trigonella foenum graecum* (local name: fenugreek) for the biosynthesis of TiO₂ nanoparticles. The leafextract was prepared and added to the solution of titanium oxy-sulphate and stirred. By adding NaOH drop-wise pH was adjusted at 8. The precipitate was washed and sintered at high temperature for the formation of well crystalline TiO₂. Here also, presence of functional groups like amine and hydroxyl group in the extract is responsible for the stabilization of TiO_2 nanoparticles.

2.3.2 Root Extract

The root extract of *Euphorbia heteradena Jaub*, from the family of *Euphorbiaceae*, which has phytochemicals such as terpenoids, phenolics, aromatic esters, saponins and steroids, was used for the synthesis of TiO₂ nanoparticles (Nasrollahzadehte al., 2015). TiO(OH)₂ was added to the aqueous solution of the root extract of *E. heteradena Jaub* with constant stirring and it was observed that the colour of solution changed to light gray which due to the excitation of surface plasmon resonance indicating the successful formation of nano-particles. The functional groups responsible for the reduction and capping of TiO(OH)₂ were identified as free OH in molecule and OH group forming hydrogen bonds, carbonyl group (C=O) and stretching C=C aromatic ring. The hydroxyl groups of phenolics in *E. heteradena Jaub* root extract play bifunctional role, they act as reducing agent thus are responsible for the reduction of titanyl hydroxide as well as capping ligands to avoid agglomeration of TiO₂ nanoparticles.

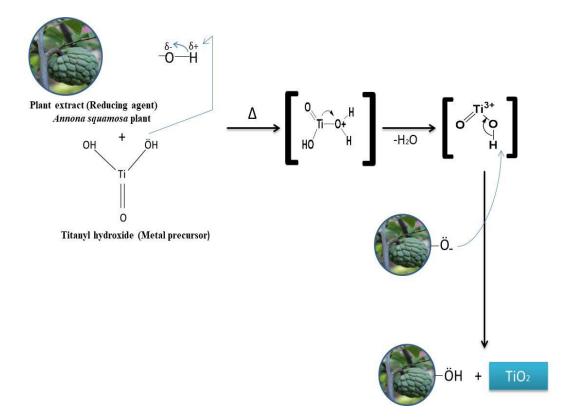

Glycyrrhiza glabra (*G. glabra*), commonly referred to as Licorice, extract was used by Bavanilatha et al., 2019 for the synthesis of TiO₂ nano-particles. An aqueous extract of *G. glabra* roots was prepared and added to titanium oxysulphate. The mixture was kept under stirring till the formation of milky white precipitate, and dried in a hot air oven for overnight to obtain the TiO₂ nano-particles. The analysis of these nano-particles indicated the presence of aromatic primary amine, NH stretch, hydroxyl stretch instigating the involvement of hydroxyl groups of carboxylic acids in synthesis. This could be due to the presence of various phenols and flavonoids in plant roots. Here also, the *G. glabra* root extract plays the role of reducing agent as well as stabilizing agent. Extract of roots of *Desmodium gangeticum*, of Fabaceae family, the most important herb in Ayurveda was used to carry out the synthesis of TiO_2 nano-particles (Jamuna et al., 2014). The schematic representation of mechanism is shown in Figure (2.2). Titanium tetraisopropoxide (TTIP) as metal precursor was added to the root extract and mixed thoroughly to obtain a sol-gel that was air dried and calcined to obtain nano-crystalline TiO₂. The interaction of *D. gangeticum* and TTIP led to O-H stretch of water and phenolic compounds, O-H stretch, normal polymeric aryl substituted C=C stretching and Ti-O stretching. The frequency bands which were observed confirmed the interaction between phyto-constituents and TiO₂.

Figure 2.2 Mechanism of TiO₂ nanoparticles synthesis taking TTIP as metal precursor and *Desmodium gangeticum* root extract as reducing agent

2.3.3 Peel Extract

Annona squamosa (A. squamosa), commonly known as custard apple, is a source of variety of medicinal and industrial products. The fruit peel extract of A. squamosa was used for the synthesis of rutile TiO₂ nanoparticles (Roopan et al., 2012). Fresh peels of A. squamosa were powdered and extract was prepared and added to TiO(OH)₂ solution under constant stirring. Titanyl hydroxide was dehydrated to give TiO₂ nanoparticles on heating with an A. squamosa aqueous peel extract at about 60 $^{\circ}$ C. Hydroxyl groups present in A. squamosa extract served as the catalyst. The possible reaction pathway is illustrated in (Figure 2.3). Hence, water soluble compounds containing hydroxyl functional groups are found to be responsible for the stabilization of TiO₂ nanoparticles.

Figure 2.3 Mechanism of TiO₂ nanoparticles synthesis taking TiO(OH)₂ as metal precursor and *Annona squamosa* peel extract as reducing agent

In another study, the synthesis of TiO_2 nanoparticles was carried out using orange peel extract (Mobeen Amanulla,2019). The prepared extract was added slowly to titanium tetrachloride (TiCl₄) under magnetic stirring at pH 7. The prepared nanoparticles were washed with deionized water to remove the impurities, then dried and calcined. The presence of glucose, furfural and residual insoluble polysaccharides and carboxylic groups in the orange peel extract helped in the synthesis of TiO₂ nano-particles.

2.3.4 Flower Extract

The flower of *Calotropis gigantea* (*C. gigantea*), commonly known as the crown flower, was used to carry out the synthesis of TiO_2 nanoparticles (Marimuthu et al., 2013). The fresh flower extract of *C. gigantea* was prepared and combined with $TiO(OH)_2$ under continuous stirring. The mixture was subjected to ultra-sonication to separate out the agglomerates formed and the powder was filtered to get the synthesized TiO_2 nanoparticles. It was confirmed that the functional groups alcohol, alkyl, aldehyde and primary amine present in the extract acted as capping/reducing agents for the synthesis of TiO_2 nanoparticles.

Kigelia africana (K. africana), a flower which constitutes anthocyanin as a predominant flavonoid pigment, was also used for the green synthesis of TiO_2 nanoparticles (Shalini at al., 2018), using HCl with titanium isopropoxide as metal precursor. Petals of *Kigelia afriana* flower were washed and dried and soaked in citric acid and finally washed several times with hexane to remove impurities. The flower contains terpenoids which generate OH free radicals and these radicals reduce TTIP to TiO_2 nanoparticles.

2.3.5 Seed Extract

The synthesis of TiO_2 nano-particles using *Vignaun guiculata* (cowpea) seeds extract was reported in a study by Chatterjee et al. (2017). The seed extract preparation involves washing, drying and boiling in distilled water. The extract was mixed with titanium oxide solution and then incubated at room temperature followed by filtration and calcinations. The existence of the primary amines and alkanes functional groups in the extract, helped to form TiO_2 nanoparticles.

Cucurbita pepo (pumpkin) seeds, a rich natural source of polyunsaturated fatty acids, phyto-sterols, proteins and various other elements were used to carry out the synthesis of TiO₂ nano-particles (Abisharani et al., 2019). The seed extract was prepared and added to titanium trichloride (TiCl₃) solution and the mixture was subjected to stirring. The biomolecules with alcoholic and C=O groups present in the extract reduced TiCl₃ to TiO₂ nanoparticles. Table 2.1 presents a summary of the available information on the functional groups present in the extract, proposed mechanism. and properties of TiO₂ nano-particles prepared through green route.

Extract	Functional group present in extract	Mechanism	Properties of TiO ₂ nanoparticles	Reference
Jatropha	Phenolic	Phenolic group-	• Avg. crystallite	Goutam et
curcas leaf	group,	responsible for capping	size- 13nm	al., 2018
extract	primary	and reduction of Ti ⁴⁺	• Surface area-	

Table 2.1 Mechanism & properties of green synthesized TiO_2 nanoparticles usingextracts from different parts of plants

	amine group	to Ti^0 .		27.038m ² /g	
			•	Pore size	
				diameter-	
				19.100nm	
			•	Total pore	
				volume-	
				$0.1291 \text{ cm}^3/\text{g}$	
Eclipta	Alcohols,	Flavones- responsible for	•	Poly-disperse	Rajakumar et
prostrate	alkanes,	capping and reduction of	•	Avg. size-	al., 2012
leaf	phenols,	Ti ⁴⁺ to Ti ⁰ .		49.5nm	
extract	flavones,				
	primary				
	amines and				
	aliphatic				
	amines				
Piper betle	Biomolecule	Biomolecules (Polyols,	•	Regular	Hunagund et
leaf	s (Polyols,	carbohydrates, proteins &		spherical like	al., 2016
extract	carbohydrate	flavonoids)- responsible		shape	
	s, proteins &	for bioreduction (Ti ⁴⁺ to	•	Avg. particle	
	flavonoids)	Ti^{0}) and		size- 8nm	
		Stabilization of TiO ₂			
		nanoparticles.			
Vitex	Phenolic	Polyols- responsible for	•	Rod-shape	Ambika and
negundo	hydroxyl	bioreduction (Ti ⁴⁺ to Ti ⁰)		morphology	Sundrarajan,
Linn leaf	groups,	and	•	Avg. size-	2016
extract and	polyols,	Stabilization of TiO ₂		26nm	

EMIMBF	amines	nanoparticles.		
4 ionic				
liquid				
Glycyrrhiz	Aromatic	Flavonoids, phytosterols	Spherical	Bavanilatha
a glabra	primary	act as green reducing agent	shaped	et al., 2019
root	amine,	& stabilizing agent.	particles	
extract	hydroxyl		• Avg. size-	
	groups		69nm	
	(phenols &		• Anatase phase	
	flavonoids),			
	aldehydes			
Annonas	Hydroxyl	Hydroxyl functional	Spherical	Roopan et
quamosa	group	group- responsible for the	shape	al., 2012
peel		stabilization of	• Polydisperse	
extract		TiO ₂ nanoparticles.	• Avg. size-	
			23nm	
Hibiscus	Carboxylate	Phenolic groups & amines-	• Dispersed &	Sahaya et al.,
rosa-	group,	act as capping agent	disaggregated	2014
sinensis	carbonyl	prevent them from	TiO ₂	
flower	groups and	aggregation.	nanoparticles	
extract	secondary		• Spherical with	
	amines,		distinct edges	
	phenolic		• Size- 7 to 24 nm	
	group			
Echinacea	Alcohols,	Flavonoids, in the free	• Avg. size-	Dobrucka,
purpurea	carboxylic	form and glycosidically	120nm.	2017

plant	acids, esters	bound kaempferol,	• Agglomerated	
extract	and ethers,	quercetin, and luteolin,	spherical shape	
	flavonoids	rutoside, isorhamnetin, apig	clusters	
		enin,)- act as bioreductant.		
Starch	Soluble	By the leaching process,	Anatase	Muniandy et
	starch	amylose is obtained from	crystalline	al., 2017
		starch which is responsible	nanoparticles	
		for reducing TTIP to TiO_2 .	• Avg. particle	
		This complete process	size- 64.19nm	
		takes place in boiling	• Specific area-	
		water.	87.2m ² /g	

2.4 Leave extract ratios used for the green synthesis of nanoparticles

The important parameter affecting the size of particle and thus its efficiency is molar ratio or weight ratio of precursor to reducing agent. A detailed study based on the quantity of extract and precursor is discussed in detail in Table 2.2.

	Table 2.2 Ratio of leaves	extract to metal precursors	in the synthesis process
--	---------------------------	-----------------------------	--------------------------

Extract	Quantity	Reference
Euphorbia	20 mL extract: 40 mL	Atarod et al., 2016
<i>heterophylla</i> leaf	AgNO ₃ -0.003 M and 1.0 g of TiO_2 .	
extract		
Jatropha curcas	0.50M TiCl ₄ in the ratio of 1:1 (v/v).	Goutam et al., 2018
leaf extract		
Moringa oleifera	5 mM titanium dioxide solution of 90 ml :	Sivaranjani and

leaves	10ml of filtered aqueous leaf extract	Philominathan, 2016
	solution.	
Annona squamosa	20ml of the aqueous extract : 80ml of 5mM	Roopan et al., 2012
peel extract	TiO ₂	
Starch	Soluble starch was dissolved in 150ml of	Muniandy et al., 2017
	boiling distilled water to which 0.01 mol of	
	TTIP was added.	
Vitex negundo	25ml of leaves extract :0.4M titanium	Ambika and Sundrarajan,
Linn leaves	isopropoxide:1ml EMIM BF4 ionic liquid	2016

2.5 Characterization and applications of TiO₂ nanoparticles synthesized from

different parts of plant

Few characterization techniques are applied to confirm the synthesized particles and other parameter which plays a key role for a particular application. Crystal structure and phase is analyzed by powder X-ray Diffraction (XRD). Morphology and size of TiO₂ NPs are determined by High Resolution Scanning Electron Microscopy (HRSEM). The composition of TiO₂ NPs is determined by X-ray Energy-Dispersive Spectrometer (EDS). Dynamic Light Scattering (DLS) determines the average particle size distribution. The target functional groups involved in the green synthesis of TiO₂ NPs are confirmed by Fourier Transform-Infrared spectrometer (FTIR). Surface area, pore size and volume of the green synthesized TiO₂ NPs before used for any application are analyzed by the techniques i.e. Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH). Optical properties of TiO₂ NPs are analyzed by UV–Visible spectrophotometer. **Table 2.3** summarizes the different types of extract and precursor used for the synthesis of TiO₂ nanoparticles of different shape, size and its applications.

Plant	Precursor	Shape	Size	Characteri	Applica-	Referenc
			(nm)	za-tion	tion	e
Leaves						
Ageratinaaltis	TiO(OH) ₂	Spherical	60-	FTIR,FSEM,	Photo-	Ganesan
sima			100	XRD	catalytic	et al.,
					activity	2016
Aloevera	TiCl ₄	Irregular	60	SEM,XRD,	-	Ganapath
				TEM, TGA,		iRao et
				PSA, UV-Vis		al., 2016
Anisomeles	TTIP	-	18	XRD	Materials	Saravana
malabarica					used for	n et
					electronic	al.,2016
					devices	
Catharanthus	TiO ₂	Cluster	25	FTIR,	Significant	Velayuth
roseus	solution			XRD,SEM	parasitic	am et al.,
					activity	2012
Eclipta	TiO(OH) ₂	Spherical	36-68	XRD,FTIR,A	Food	Rajakum
prostrata				FM,FESEM	additives,	ar et al.,
					coating,	2012
					cosmetics,	
					etc.	
Euphorbia	TiO(OH) ₂	Poly	83.22	SAED,TEM,	Anti-	Zahir et
prostrate		disperse		AFM	leishmanial	al., 2015
Aiton					agents	
Jatropha	TiCl ₄	Spherical	13	UV-Vis,	Photo-	Goutam

Table 2.3 TiO_2 nanoparticles synthesized from different plants species	
---	--

eureas				FESEM,	catalytic	et al.,
curcas						
				EDS,FTIR,X	degradation	2018
				RD,DLS,	of tannery	
				BET,BJH	wastewater	
Momordica	TiCl ₄	Spherical	47.6	UV-Vis,	Antimalari	Gandhi et
charantia				XRD, FTIR,	al activity	al., 2018
				HRTEM,ED		
				X,DLS		
Morinda	TiCl ₄	Spherical	15-19	EDAX,FTIR,	Anti-	Sundraraj
citrifolia				SEM,XRD	microbial	an et al.,
					activity	2017
					against	
					pathogenic	
					diseases	
Moringa	TiO ₂	Spherical	100	UV-Vis,	Wound	Sivaranja
oleifera	solution			SEM	healing	ni and
					activity	Philomin
						athan,
						2016
Nyctanthes	TTIP	Spherical	100	XRD,SEM,P	Bio-	Sundraraj
arbor –tristis				SA	medical	an and
					and	Gowri,
					nanotechno	2011
					logy	
Piper betle	Titanium n-	Spherical	7	FTIR,UV-	Anti-	Hunagun
	butoxide(T			Vis,XRD,	bacterial	d et al.,

	NB)			SEM	activity	2016
	ND)			SLW	-	2010
					against	
					multi-drug	
					resistant	
					microorgan	
					isms	
Psidium	TiO(OH) ₂	Spherical	32.58	FESEM,	Anti-	Santhosh
guajava				XRD,SEM	bacterial &	kumar et
					antioxidant	al., 2014
					properties	
Solanum	TiO(OH) ₂	Spherical,	70	XRD, FTIR,	Pediculocid	Rajakum
trilobatum		oval		SEM, EDX,	al,	ar et al.,
				AFM	acaricidal,	2014
					and	
					larvicidal	
					activity	
Trigonella	Titanium	Spherical	20-90	UV-Vis,	Anti-	Subhapri
foenum-	oxysulphat			HR-TEM,	microbial	ya and
graecum	e			FTIR,HR-	activity	Gomathi
				SEM, XRD		priya,
						2018
Vitex negundo	Titanium	Rod –	26	XRD, SEM,	Anti-	Ambika
Linn	isopropoxid	shape		TEM, FTIR	bacterial	and
(+	e				activity	Sundraraj
[EMIM] ⁺ BF ₄ ⁻						an, 2016
)						

(without (EMIMJ*BF,icImage: Construct of the section of th	Vitex negundo	Titanium	Spherical	15	XRD, SEM,	Anti-	Ambika
IEMIM]"BF,:)Ann, 2016RootsAcanthophyluTTIPSpherical20-25XRD, TEM, SEM, EDAX, FTIR-Madadi and Lotfab ad, 2016DesmodiumTTIPSpherical31UV-Vis, RAnti- activityJamuna et al., & activityDesmodiumTTIPSpherical31UV-Vis, RAnti- activityJamuna activityDesmodiumTTIPSpherical31UV-Vis, RAnti- activityJamuna activityEuphorbiaTiO(OH)2Spherical20XRD, FTIR, R-Nasroll abzade hand Sajadi, 2015GlycyrrhizaTitaniumSpherical36UV-Vis, FTIR, XRD, FESEMAnticancerBavani athat et althat et FESEMAnticancerBavani althat et althat et	Linn	isopropoxid			TEM, FTIR	bacterial	and
)Image: second seco	(without	e				activity	Sundraraj
RootsAcanthophyluTTIPSpherical20-25XRD, TEM, SEM, EDAX, FTIR-Madadi and Lotfab ad, 2016 <i>laxiusculum</i> TTIPSpherical31UV-Vis, Anti-Anti-Jamuna et al., & antioxidant activity <i>Desmodium</i> TTIPSpherical31UV-Vis, Anti-Anti-Jamuna et al., & activity <i>Desmodium</i> TTIPSpherical31UV-Vis, Anti-Anti-Jamuna et al., & activity <i>Desmodium</i> TTIPSpherical20XRD, FTIR Anti-Anti-Jamuna et al., & activity <i>Desmodium</i> TTIPSpherical31UV-Vis, Anti-Anti-Jamuna et al., & & Anti-Anti- <i>Desmodium</i> TTIPSpherical31UV-Vis, Anti-Anti-Jamuna et al., & & & Antioant activityAnti- <i>Desmodium</i> TTIPSpherical20XRD, FTIR, Antioant activityAnti- <i>Baub</i> TiO(OH)2Spherical20XRD, FTIR, Antioant Antioan	[EMIM] ⁺ BF ₄ ⁻						an, 2016
AcanthophyluTTIPSpherical20-25XRD, TEM, SEM, EDAX, FTIR-Madadi and Lotfab ad,laxiusculumIIIISpherical1EDAX, FTIRIIIIILotfab ad,DesmodiumTTIPSpherical31UV-Vis, Anti-Anti-Jamuna et al., &gangeticumTTIPSpherical31UV-Vis, Anti-Anti-Jamuna et al., &gangeticumTTIPSpherical31UV-Vis, Anti-Anti-Jamuna et al., &LuphorbiaTiO(OH)2Spherical20XRD, FTIR, AntiNasroll ahzade h and Sajadi, 2015JaubTitaniumSpherical36UV-Vis, FTIR, XRD, SuphentialAnticancer Bavani FTIR, XRD, SuphentialBatha et Suphate)						
mIaxiusculumImage: Sem s	Roots						
laxiusculumLotfablaxiusculumFDAX, FTIRLotfabad,2016DesmodiumTTIPSpherical31UV-Vis,Anti-gangeticumTTIPSpherical31UV-Vis,Anti-JamunagangeticumFTIRFTIRMicrobialet al.,&2014beteradenaTiO(OH)2Spherical20XRD, FTIR,-NasrollJaubTitaniumSpherical36UV-Vis,AnticancerBavaniglabraoxy-Spherical36UV-Vis,AnticancerBavanisulphateinteriorieinteriorieFTIR, XRD,&potentiallatha etjointSulphateinteriorieinterioriejointjoint	Acanthophylu	TTIP	Spherical	20-25	XRD, TEM,	-	Madadi
Desmodium gangeticumTTIP TTIPSpherical Spherical31UV-Vis, Anti- XRD, FTIRAnti- microbialJamuna et al., & 2014 antioxidant activityEuphorbia heteradena JaubTiO(OH)2Spherical20XRD, FTIR, TEM- Nasroll ahzade h and Sajadi, 2015Glycyrrhiza glabraTitanium oxy- sulphateSpherical36UV-Vis, FTIR, XRD, FTIR, XRD, ESEMAnticancer bioactivityBavani atha et potential	m				SEM,		and
Desmodium gangeticumTTIP TTIPSpherical31UV-Vis, XRD, FTIRAnti- microbialJamuna et al., & 2014 antioxidant activityEuphorbia heteradena JaubTiO(OH)2Spherical20XRD, FTIR, TEM- Nasroll h and Sajadi, 2015Glycyrrhiza sulphateTitaniumSpherical36UV-Vis, FTIR, XRD, FTIR, XRD, KESEMAnticancerBavani latha et FESEM	laxiusculum				EDAX, FTIR		Lotfab
DesmodiumTTIPSpherical31UV-Vis,Anti-JamunagangeticumTTIPSpherical31UV-Vis,Anti-JamunagangeticumFarmer and the second sec							ad,
gangeticum							2016
LeadLe	Desmodium	TTIP	Spherical	31	UV-Vis,	Anti-	Jamuna
EuphorbiaTiO(OH)2Spherical20XRD, FTIR, TEM-Nasroll ahzadeheteradenaII	gangeticum				XRD, FTIR	microbial	et al.,
LuphorbiaTiO(OH)2Spherical20XRD, FTIR, TEM-NasrollheteradenaIII <th></th> <th></th> <th></th> <th></th> <th></th> <th>&</th> <th>2014</th>						&	2014
EuphorbiaTiO(OH)2Spherical20XRD, FTIR, TEM-Nasroll ahzadeheteradenaIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						antioxidant	
AAAAAAAheteradenaII <tdi< td="">III<!--</th--><th></th><th></th><th></th><th></th><th></th><th>activity</th><th></th></tdi<>						activity	
JaubImage: subscript of the sector of the secto	Euphorbia	TiO(OH) ₂	Spherical	20	XRD, FTIR,	-	Nasroll
GlycyrrhizaTitaniumSpherical36UV-Vis,AnticancerBavaniglabraoxy-Image: SulphateImage: SulphateImage	heteradena				TEM		ahzade
GlycyrrhizaTitaniumSpherical36UV-Vis,AnticancerBavaniglabraoxy-Image: sulphateImage: sulphateImage	Jaub						h and
GlycyrrhizaTitaniumSpherical36UV-Vis,AnticancerBavaniglabraoxy-Image: sulphateImage: sulphateImage							Sajadi,
glabraoxy- sulphateFTIR, XRD, FESEM&potential bioactivitylatha et al., 2019							2015
sulphate FESEM bioactivity al., 2019	Glycyrrhiza	Titanium	Spherical	36	UV-Vis,	Anticancer	Bavani
2019	glabra	oxy-			FTIR, XRD,	&potential	latha et
		sulphate			FESEM	bioactivity	al.,
Peel							2019
	Peel						

Annona	TiO(OH) ₂	Poly	23	UV-Vis,	Efficient	Roopan
squamosa		disperse		XRD, SEM,	phyto-	et al.,
				TEM, EDS	synthesis	2012
Citrus sinensis	TTIP	Tetragonal	19	TEM,	-	Kandreg
				XRD,TGA,		ula et
				PSA		al., 2015
Orange	TiCl ₄	Triangular	20-50	XRD,	Anti-	Mobeen
				FESEM,	bacterial,	Amanull
				FTIR,	cyto-	a and
				UV-Vis,	toxicity &	Sundara
				EDX	humidity	m, 2019
					sensor	
					applicatio	
					ns	
Flower						
Calotropis	TiO(OH) ₂	Spherical	10.52	XRD, FTIR,	Acaricidal	Marimut
gigantea				SEM, EDX	activity	hu et al.,
						2013
Hibiscus rosa-	Titanium	Spherical	7-24	XRD,SEM,	Bio-	Sahaya
sinensis	oxy-			FTIR	medical	et al.,
	sulphate				application	2014
					S	
Kigelia	TTIP	Rod-shaped	10	FESEM,UV	Enhanced	Shalini
Africana				-Vis,FTIR	photocurre	et al.,
					nt density	2018
Seed		1	<u> </u>	1		1

Cajanus cajan	TTIP	S	Spherical		10.5		RD,AFM	Contr	olling	A	Arif et
								the fo	ouling of	a	1., 2019
								ultraf	iltration		
								PVD	F		
								mem	branes		
Cicer	TiCl ₄	S	pherical	1	4	T	EM,XRD,	Rene	Renewable		Kashale
arietinum						U	V-	resou	rce for	e	t al.,
						v	is,TGA	green	l	2	016
								synth	esis		
Cucurbita	TiCl ₃	Т	etragonal	N	lano	X	RD, UV-	-		A	bishara
реро				ra	ange	V	is, FTIR			ni et al.,	
										2	.019
Vigna	TiO ₂	0	val	11.5		S	EM,FTIR	Ant-i	microbial	C	Chatterje
unguiculata	solution	sh	shaped					& anticancer		e	et al.,
								treatr	nents	2	017
Whole plant				1		1				<u> </u>	
Aloe vera	Titanium		Irregular		60-80)	XRD,PSA	,SE	Electro/		Khadar
	iso-						M,FTIR		photo-		et al.,
	propoxide								electroch	e	2015
									mical		
									applicatio)	
									ns		
Curcuma	TiO ₂ bulk		-		50		AFM,SEN	A,XR	Reduce		Abdul
longa	particles						D,UV-Vis	5	the funga	1	Jalill et
									growth,sp)	al.,
									ores and		2016

									Pathoge	eni	
									city.		
Echinacea	TiO ₂		Poly		120		UV-Vis,	SEM,	-		Dobruc
purpurea	solution		disperse				TXRF, F	TIR			ka,
											2017
Others	<u> </u>				L		L				
Starch	TTIP	Те	etragonal	9		X	RD,	Photo-		Mı	iniandy
						S	EM,	degrad	lation	et a	al., 2017
						N	AA				
Wheat starch	TiO ₂	Sp	herical	-		U	V-	Starch	/TiO ₂	Go	udarzi et
						v	is,SEM	bio-		al.,	2017
								nanoc	omposi		
								te for	UV-		
								protec	tive		
								food			
								packaş	ging		
								materi			
								materi	u1		

2.6 Synthesis of SiO₂ NPs

Earlier workers have mainly used tetraethoxysilane (TEOS) (Kim et al., 2002) and tetramethoxysilane (TMOS) (Niki et al., 2009) as precursors to produce silica nanoparticles. However, these chemicals are relatively expensive and toxic to environment (Hiroshi., 1994, Niki et al., 2009), hence attention has been focussed towards other silica bearing biological sources. Agricultural biomass like rice husk ash and bamboo leave have sufficient amount of silica (Ahmed et al., 2009). Silica obtained from biomass exists in the amorphous state with high surface area (Chandrasekhar et al.,

2006, Shelke et al., 2010). Silica is used as adsorbent (Jang et al., 2009, Lakshmi et al., 2009, Wongjunda et al., 2010), support material, medical additive and filler in composite materials, etc. (Liu et al., 2005, Shin et al., 2008). The conventional chemical routes of obtaining silica are costly, time consuming and polluting. Hence there is a need to look for alternative less polluting feedstocks and route. Several workers have tried to obtain silica from rice husk and bamboo leave using different techniques such as thermal processing (combustion/pyrolysis), alkaline extraction, sol-gel method, laser ablation and microwave heating. A summary of the available information on synthesis, characterization and applications of SiO₂ obtained from biomass is presented below.

Nguyen et al. (2019) successfully synthesized SiO_2 nanoparticles from rice husk ash by the sol-gel method. Synthesized SiO_2 nano-particles were morphologically and chemically characterized. The Fe^{2+} ion adsorption capacity of the SiO_2 nano-particle was studied under different conditions. In addition, the synthesized SiO_2 with the size of around 50nm can be used for biomedical applications such as in drug delivery.

Almeida et al. (2019) synthesized the black SiO₂ nanoparticles from the rice husk ash by pyrolysis method. Synthesized particles were characterized by thermogravimetric analysis and loss of carbon mass was identified. The X-ray diffraction (XRD) denoted the presence of amorphous SiO₂ .The transmission electron microscopy (TEM) results showed the formation of nanoparticles having a particle size of about 10–20 nm. Through the scanning electron microscopic (SEM) images, the cellular porous structure was noted, and BET surface area was calculated near about 114m²/g. In this work, the physico-chemical and toxicological characteristics of rice husk (RH) and rice husk ash (RHA) by pyrolysis were investigated.

Mesoporous SiO_2 was successfully prepared from rice husk by thermal combustion and alkaline extraction process (Vu et al., 2019). It was used to synthesize the mesoporous

composite by a facile impregnation method. The SiO_2 was used as support due to mesoporous structure with a high surface area (109.5m²/g). The reaction rate and degradation efficiency of the organic dye (tartrazine) by the synthesized composite was evaluated.

Wee et al. (2019) extract silica from rice husk by acid/alkaline precipitation process. Particles were characterized by various characterization techniques like Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM).

Enrique et al. (2018) used the microwave heating technique to obtain silica from rice husk. to improve the material characteristics and investigated its potential to remove methylene blue dye from aqueous solutions. The characterization techniques like XRD, FTIR, N_2 adsorption isotherms (BET and BJH), Gas picnometry, DSC and SEM revealed that the microwave modified nanosilica presented more interesting characteristics than the standard nanosilica. The purity of nanosilica was 98.8% and the particle size was around 93nm.

Song et al. (2018) extracted the high surface area SiO_2 nanoparticle from rice husk by sol–gel method with changing the parameters. A design optimization of the Taguchi approach was adopted to optimize the parameters. Synthesized particles were characterized by using the methods like, TEM, FT-IR, XRD and the nitrogen adsorption–desorption analysis. So biogenic SiO_2 nano-particle prepared from rice husk by employing Taguchi approach propose an efficient time saving and quality control strategy to optimize the synthetic process; resulting silica nano-particles with high surface area that can be extended to biomedical and catalytic application.

Bose et al. (2018) used rice husk, for the synthesis of silica nanoparticles by rapid microwave heating. The synthesized nano-particles having 4.9nm diameter exhibited excellent mono-dispersity and water dispersibility, high photo- and pH-stability and high quantum yield, and hold promise for a wide range of optoelectronic and bio-imaging applications.

Rangaraj et al. (2017) used bamboo leaf ash as the source of silica for the synthesis of SiO_2 nanoparticles through thermal combustion and alkaline extraction process. The synthesized particles were amorphous having spherical morphology with high surface area i.e. 428 m² g⁻¹. The authors suggested that synthesized particle can be used for drug delivery and other medical applications.

Bio-generated mesoporous SiO₂ nano-particles were successfully synthesized by Sankar et al. (2016) from rice husk ash through a simple acid pre-treatment method. Synthesized particles were amorphous spherical particles. The particle size was 3-10nm with the highest surface area of 247.18 m² g⁻¹. It was claimed that these materials could be considered for energy storage and drug delivery applications.

Athinarayanan et al. (2015) used rice husk as a natural bio- precursor for biogenic silica synthesis using the procedure used by Sankar et al. (2016). Spherical particles with 10-30nm diameter were obtained. The authors claimed that the particles could be used for biomedical applications like bone tissue engineering.

San et al. (2014) reported successful preparation of silica nanoparticles using a laser ablation technique. Synthesized particles were confirmed by SEM, TEM, and DLS techniques. Results showed that the nano-particles obtained by laser ablation were significantly smaller (38–190 nm) than those prepared using chemical treatment.

Wang et al. (2011) used controlled pyrolysis method to obtain silica nano-particle from rice husk. High purity silica particle with 20-30nm diameter was prepared by this method. Various characterization techniques were followed to particle morphology and thermal stability. The authors claimed that the synthesized particle may replace silica gel and fumed silica for various applications.

Table 2.4 gives a summary of the available information on the synthesis of silica from biomass, characterization of particles and their application.

Table 2.4 Synthesis,	characterization	and	application	of SiO ₂	nanoparticles	obtained
from biomass						

Silica source	Synthesis process	Shape	Size (nm)	Characterizatio n	Application	Reference
Rice husk Ash	Sol-gel	Spherical	50	FTIR, UV-Vis , TEM-EDAX and BET	Adsorptive removal of iron	Nguyen et al.,2019
Rice husk	Pyrolysis	-	10- 20	FTIR, XRD,BET, SEM-EDAX and TEM	Not Studied	Almeida et al., 2019
Rice husk	Sol-gel	Spherical	24- 87	FTIR, XRD,BET, SEM-EDAX and TEM	Biomedical and catalytic application	Song et al., 2018
Rice husk	Microwav e synthesis	Spherical	4.9	UV-Vis, HR- TEM,EDAX	Fluorophore s for white light emission	Bose et al., 2018
Bamboo leaf	Thermal combustio n and alkaline extraction	Spherical	25	FTIR, XRD, SEM, TEM	Not Studied	Rangaraj et al.,2017
Rice husk Ash	Chemical method	Spherical	10- 50	FTIR, XRD,BET, SEM-EDAX and TEM	Energy storage and biomedical application	Sankar et al., 2016
TEOS	Sol-gel	-	79.6	Particle Size	-	Azlina et al.,

			8- 87.3 5	Analyzer, FESEM		2016
Rice husk	Acid treatment	Spherical	10- 30	FTIR, XRD,BET, SEM-EDAX and TEM	Biomedical application	Athinarayana n et al., 2015
TEOS	Sol-gel	-	25	XRD, HR-TEM, FTIR	Not Studied	Dubey et al., 2015
Sugarbeet bagasse	Laser ablation	-	38- 190	SEM, EDAX, DLS, TEM, FTIR, XPS	Not Studied	San et al., 2014
Tri- methoxy vinyl silane	Micelles entrapmen t approach		28- 168	Particle size analysizer, TEM	Not Studied	Zainala et al., 2013
Rice husk	Sol-gel		3	FTIR, XRD, TEM	Not Studied	Le et al., 2013
Rice hulls	Pyrolysis		6- 100	FTIR, XRD,SEM, TEM	Not Studied	Palanivelu et al., 2013
Agricultura l biomass	Sol-gel	Spherical	50.9	FTIR, XRD, BET and TEM	Not Studied	Adam et al., 2011

From the above literature, it is clear that utilization of bio-waste for nano-particle synthesis is quite encouraging and the particles synthesized by the green route have the same potential, morphology and size as those synthesized by chemical route. The biological extracts used for the green synthesis of nano-particles are easily available at low cost, compared to the expensive chemicals required for chemical synthesis. It is also clear that plants or plant parts have chemicals having potential to act as a reducing, capping and stabilizing agent for the synthesis of titanium oxide nanoparticle.

Green TiO_2 particles using few plants and their parts are successfully synthesized by the researchers for many applications with effective results. Still there is scope for usage of new green sources synthesis of TiO_2 NPs.

Similarly, different techniques used to extract bio nano-silica from the biomass are reported. Different types of chemicals and surfactants have been used to synthesize the SiO₂ nano-particle, which increases the cost of the chemical route to obtain a nano-size particle. However, in the acid precipitation method, only easily available chemicals like hydrochloric acid (HCl), sulfuric acid (H₂SO₄), and sodium hydroxide (NaOH) are used for the synthesis

of the SiO_2 nanoparticle. It was found that SiO_2 particle synthesized from the biomass have all properties to act as an adsorbent and support materials for different applications.

2.7 Justification for Present Work and Objectives

From the assessment of the available published literature on the synthesis of TiO_2 nanoparticles it is seen that in spite of the use of plant extract from several plant species and their parts, still there are species specific to India and available throughout no reported information is available. Further, the use of the TiO_2 prepared through green route as a photo-catalytic material embedded in polymeric matrix has been explored only by a couple of workers. Similarly, though sufficient work is available in open literature on the extraction of silica from rice husk but little/no effort has been made to use it as the filler in membranes to improve their performance. Further there is a need to look for another biogenic source for recovering amorphous silica. In view of these the present work has been planned with following specific objectives:

- Synthesis of nano-particles of TiO₂ using extract of Jamun (Syzygium cumini) leaves as capping/ stabilizing agent.
- 2. Characterization and use of the synthesized TiO₂ particles for photo-catalytic degradation of waste water.
- 3. Evaluation of the performance of photocatalytic degradation and separation of pollutants form an industrial wastewater
- 4. Extraction of amorphous SiO_2 from bamboo leaves, its characterization and act as support material with TiO_2 particles to enhance the photocatalytic degradation.
- 5. Use of extracted silica particles as filler in membrane for improving membrane performance.