
 

 

Chapter 7  

Effect of Heat Transfer on Swallowing of Food 

Bolus through Oesophagus with Dilating Peristaltic 

Wave: Application to cryosurgery 

 

7.1 Introduction  

Heat transfer refers to the exchange of thermal energy between physical systems. Transfer of 

thermal energy occurs from the body of higher temperature to the body of lower temperature. 

The rate of heat transfer depends on the temperature difference of nearby bodies and the 

physical properties of the medium through which heat transfer takes place. In the transport 

process of fluids, heat transfer takes place by the method of convection.  In physiology, heat 

transfer analysis is applicable to get information about the properties of tissues. The flow of 

blood can be measured using a dilution technique, in which heat is either injected or 

generated locally and the thermal clearance is evaluated which gives flow rates. Recent 

development in application of hyperthermia, laser therapy and cryosurgery to destroy 

undesirable cancer tissues encourages the researchers to model the heat transfer effect in 

tissues.  

 Several decades back many authors (Pfeffer and Happel, 1964; Raju and Rathna, 

1970; Victor and Shah, 1975; Zapryanov et al., 1980) presented heat transfer effect in tube 

flow but it was not peristaltic flow. Probably, first literature treating heat transfer in 

association with peristaltic flow was presented by Radhakrishnamacharya and Murty (1993).  
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They obtained closed form solutions for temperature, coefficient of heat transfer and velocity 

up to the second order by perturbation techniques. Vajravelu et al. (2007) discussed the 

interaction of peristalsis with heat transfer in a vertical porous annular region and formulated 

heat transfer at the wall and the pressure–flow relationship. Observations were that the heat 

transfer at the wall was affected significantly by the amplitude of the peristaltic wave but 

effect of pressure drop on flux was almost negligible for peristaltic waves of large amplitude. 

Mekheimer and Abdelmaboud (2008) investigated heat transfer and magnetic field on 

peristaltic transport of a Newtonian fluid in a vertical annulus with application to endoscope. 

Srinivas et al. (2009) studied the effects of wall slip conditions and heat transfer both on 

peristaltic flow of MHD Newtonian fluid in a porous channel with elastic wall properties 

under the assumptions of long wavelength and low-Reynolds number approximations. The 

influence of velocity-slip and thermal slip on peristaltic flow in an asymmetric channel was 

discussed by Hayat et al. (2010). Makinde and Chinyoka (2010) presented a model for 

transient heat transfer in channel flow and solved the governing nonlinear equations of 

momentum and energy transport numerically by finite difference method. Hayat et al. (2014) 

presented a study in order to show the effects of convective boundary conditions on 

peristaltic transport of a micropolar fluid in an asymmetric channel with heat source/sink. 

Prakash et al. (2018) discussed a numerical simulation to study the heat and flow 

characteristics of blood flow altered by electro-osmosis through the tapered micro-vessels 

assuming blood as non-Newtonian (micro-polar) nano-fluids. This study explored the nano-

fluid dynamics in peristaltic transport as symbolized by heat transport in biological flows and 

also in gastro-intestinal motility enhancement. Misra et al. (2018) formulated a mathematical 

model to analyze the peristaltic transport of magneto hydrodynamic fluid associated with 

heat and mass transfer in an asymmetric channel. On the basis of this study, the authors 

reported that fluid velocity and the distributions of concentration and temperature are 

considerably influenced by Grashof number.   

The mechanism of peristalsis, in oesophageal swallowing, has been the object of 

scientific research for long. The investigation of Li and Brasseur (1993) gave a boost to 

investigation on swallowing making the literature rich (Nguyen et al., 1997; Misra and 

Pandey, 2001; Nicosia and Brasseur, 2002; Toklu, 2011; Misra and Maiti, 2012; Pandey and 

Tiwari, 2017; Pandey and Singh, 2018a). Meanwhile, the report of high pressure zone in the 
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distal oesophagus by Kahrilas et al. (1995), followed by anatomical measurement of 

oesophageal wall thickness by Xia et al. (2009) in contracted and also in the dilated states, 

gave a new turn to research. Analysing the two reports, Pandey et al. (2017) concluded 

dilation of wave amplitude during propagation. But the interaction between heat transfer and 

peristalsis remained yet ignored in oesophageal swallowing.   

Oesophageal diseases such as oesophageal cancer, oesophageal motility disorders and 

Barrett’s oesophagus have brought the human health under threat in the modern society. The 

oesophageal heat transfer device, which is designed as a silicone orogastric tube with 3 

lumens (Markota, 2016), is used for temperature management of adult survivors of cardiac 

arrest. Oesophageal cancer is one of the most lethal cancers and accounts for approximately 

1% of all cancers (Kumbasar, 2002). Cryosurgery uses extreme cold liquid to destroy 

cancerous cells during surgery. Study of peristalsis in oesophagus with heat transfer effect 

may help cure those oesophageal diseases. Sreenadh et al. (2012) presented a model for the 

effect of heat transfer and wall properties of flexible walls in oesophageal swallowing. 

Tripathi (2012) and Tripathi et al. (2013) investigated mathematical model for swallowing of 

food bolus under the influence of heat transfer and derived the expressions for temperature 

field, axial velocity, volume flow rate, pressure gradient, local wall shear stress, stream 

function and reflux limit under the assumptions of long wavelength and low Reynolds 

number approximations. Authors assumed propagating train of boluses within the peristaltic 

wave with constant wave amplitude and considering the oesophagus as a channel. But, in 

view of Pandey et al. (2017), it looks more appropriate to examine the effect of heat transfer 

on swallowing of food bolus in an axisymmetric tube with dilating peristaltic wave 

amplitude. We prefer single bolus transport which is more frequent.  

7.2 Mathematical Formulation 

The equation of wall geometry of oesophageal tube, which is assumed as a circular 

cylindrical tube of finite length, due to propagation of a single peristaltic wave along it with 

dilating wave amplitude is modeled as  

𝐻′(𝑥′, 𝑡′) = {
𝑎 − ∅′𝑒𝑘

′𝑥′𝑐𝑜𝑠2
𝜋

𝜆
(𝑥′ − 𝑐𝑡′),     during [𝑡′,   𝑡′ +

𝜆

𝑐
 ]

𝑎 − ∅′𝑒𝑘
′𝑥′ ,                                     otherwise               

 .            (7.1) 
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where 𝐻′, 𝑥′ , 𝑡′, 𝑎 , 𝑘′, ∅′, 𝑐  and 𝜆 denote radial displacement of the wall from the centre 

line, axial coordinate, time parameter, radius of the tube, dilation parameter, amplitude of the 

wave, wave velocity and wavelength respectively (Fig. 7.1).  

 

                   

Fig. 7.1 Schematic diagram of the flow under peristaltic waves of progressively dilating 

amplitude. Long dashed lines touching relaxed wall indicate stationary wall. The continuous 

solid wave indicates position of single bolus; similar boluses lagging behind or leading 

simply symbolize that the previous position and the future position of the bolus. 

 

The governing equations for unsteady axisymmetric flow of an incompressible 

Newtonian fluid with heat transfer and without body forces are given by  

𝜌 (
𝜕

𝜕𝑡′
+ 𝑢′

𝜕

𝜕𝑥′
 + 𝑣′

𝜕

𝜕𝑟′
) 𝑣′ = −

𝜕𝑝′

𝜕𝑟′
+ 𝜇′ (

1

𝑟′
𝜕

𝜕𝑟′
+

𝜕2

𝜕𝑟′ 2
+

𝜕2

𝜕𝑥′2
−

1

𝑟′ 2
) 𝑣′,             (7.2) 

𝜌 (
𝜕

𝜕𝑡′
+ 𝑢′

𝜕

𝜕𝑥′
 + 𝑣′

𝜕

𝜕𝑟′
) 𝑢′ = −

𝜕𝑝′

𝜕𝑥′
+ 𝜇′ (

1

𝑟′
𝜕

𝜕𝑟′
+

𝜕2

𝜕𝑟′ 2
+

𝜕2

𝜕𝑥′2
) 𝑢′ + 𝜌𝑔𝛼(𝑇′ − 𝑇0),        (7.3) 

𝜌𝑐𝑝 (
𝜕

𝜕𝑡′
+ 𝑢′

𝜕

𝜕𝑥′
 + 𝑣′

𝜕

𝜕𝑟′
)𝑇′ = κ(

1

𝑟′
𝜕

𝜕𝑟′
+

𝜕2

𝜕𝑟′ 2
+

𝜕

𝜕𝑥′2
) 𝑇′ + 𝛺′.              (7.4)   

The continuity equation is  

𝜕𝑢′

𝜕𝑥′
 +

1

𝑟′
𝜕(𝑟′𝑣′)

𝜕𝑟′
= 0 .                   (7.5) 

where 𝜌, 𝑢′,  𝑝′, 𝑣′, 𝑟′, 𝑔, 𝛼, 𝑇′,  𝑇0 ,   𝑐𝑝 , κ   and 𝛺′ are fluid density, axial velocity, 

pressure, radial velocity, radial coordinate, acceleration due to gravity, coefficient of linear 

Contracted wall Stationary wall

Wall position
Relaxed wall
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thermal expansion of the fluid, temperature at an arbitrary point of the fluid, temperature at 

the centre line, specific heat at constant pressure, thermal conductivity  and constant heat 

addition or absorption  respectively. The buoyancy force is approximated by the Boussinesq 

form (Bird et al., 1976) in the Eq. (7.3).  

The various parameters are non-dimensionalised as follows: 

𝑥 =  
𝑥′

𝜆
 , 𝑟 =  

𝑟′

𝑎
 , 𝑡 =  

𝑐𝑡′

𝜆
 , 𝑢 =  

𝑢′

𝑐
 , 𝑣 =  

𝑣′

𝑐𝛿 
 , 𝛿 =  

𝑎

𝜆 
 ,

𝐻 =
𝐻′

𝑎
 , 𝑘 = 𝑘′𝜆, 𝑙 =

𝑙′

𝜆
 ,    𝜙 =

∅′

𝑎
 ,     𝑝 =

𝑝′ 𝑎2

𝜇′𝑐𝜆
 , 𝑄 =  

𝑄′

𝜋𝑎2𝑐
 ,   

𝑅𝑒 =
𝜌𝑐 𝑎𝛿

𝜇′
, 𝑇 =

𝑇′−𝑇0

𝑇1−𝑇0
 , 𝐺𝑟 =

𝜌𝑔𝛼𝑎2(𝑇1−𝑇0)

𝜇′𝑐
, 𝛺 =  

𝑎2𝛺′

κ(𝑇1−𝑇0)
 . }

 
 

 
 

                                    (7.6) 

where 𝛿, 𝑙′ , 𝑄′, 𝑅𝑒 , 𝑇, 𝑇1 , 𝐺𝑟  and 𝛺  are wave number, length of the tube, volume flow rate, 

Reynolds number, dimensionless temperature, temperature at the wall, Grashof number and 

dimensionless heat parameter of the source or sink respectively.  

Introducing the above mentioned non-dimensional parameters into Eqs. (7.1)-(7.5) 

and using the low Reynolds number and long wavelength approximations, wall equation 

(7.1) and governing Eqs. (7.2)-(7.5) reduce respectively to the following dimensionless forms 

𝐻(𝑥, 𝑡) = {
1 − ∅𝑒𝑘𝑥𝑐𝑜𝑠2𝜋(𝑥 − 𝑡),     during [𝑡, 𝑡 + 1 ]

1 − ∅𝑒𝑘𝑥,                              otherwise           
.              (7.7) 

𝜕𝑝

𝜕𝑟
= 0,                     (7.8)  

𝜕𝑝

𝜕𝑥
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) +  𝐺𝑟𝑇,                   (7.9) 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) + 𝛺 = 0,                  (7.10)  

𝜕𝑢

𝜕𝑥
+
1

𝑟

𝜕(𝑟𝑣)

𝜕𝑟
= 0.                 (7.11) 

The following dimensionless boundary conditions are imposed on the governing equations: 

𝑢(𝑟, 𝑥, 𝑡)|𝑟=𝐻 = 0,   
𝜕𝑢

𝜕𝑟
|
𝑟=0

= 0,   𝑣(𝑟, 𝑥, 𝑡)|𝑟=0 = 0,    𝑣(𝑟, 𝑥, 𝑡)|𝑟=𝐻 =
𝜕𝐻

𝜕𝑡
 ,          (7.12) 
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𝜕𝑇

𝜕𝑟
|
𝑟=0

= 0,     𝑇(𝑟, 𝑥, 𝑡)|𝑟=𝐻 = 1.                                                (7.13) 

7.3 Solution  

Integrating Eq. (7.10) twice with respect to 𝑟, and using the first and second boundary 

conditions in (7.13) respectively, we get the temperature in the tube at any point as   

𝑇 = 1 +
𝛺

4
(𝐻2 − 𝑟2).                   (7.14) 

Integrating Eq. (7.9) too, with respect to 𝑟, by using Eq. (7.14), in view of Eq. (7.8) 

and second boundary condition in (7.12), we obtain the axial velocity gradient as 

𝜕𝑢

𝜕𝑟
=

𝑟

2

𝜕𝑝

𝜕𝑥
−  𝐺𝑟 {

𝑟

2
+

𝛺

16
(2𝐻2𝑟 − 𝑟3) },               

which, on integrating once more with respect to 𝑟, and applying the first boundary condition 

in (7.12), gives the axial velocity as 

𝑢 =
1

4

𝜕𝑝

𝜕𝑥
(𝑟2 − 𝐻2) + 

𝐺𝑟

64
{16(𝐻2 − 𝑟2) + 𝛺(3𝐻4 − 4𝐻2𝑟2 + 𝑟4) }.                  (7.15) 

Solving the continuity equation (7.11) by inserting the axial velocity given in Eq. 

(7.15) and applying the third boundary condition in (7.12), the radial velocity is given by  

𝑣 =
1

16

𝜕2𝑝

𝜕𝑥2
(2𝐻2𝑟 − 𝑟3) −

𝑟𝐻

4

𝜕𝑝

𝜕𝑥

𝜕𝐻

𝜕𝑥
− 

𝐺𝑟𝐻

32

𝜕𝐻

𝜕𝑥
{8𝑟 + 𝛺(3𝐻2𝑟 − 𝑟3)}.           (7.16) 

In view of the forth boundary condition in (7.12), Eq. (7.16) gives 

𝜕2𝑝

𝜕𝑥2
−

4

𝐻

𝜕𝐻

𝜕𝑥

𝜕𝑝

𝜕𝑥
=

16

𝐻3
𝜕𝐻

𝜕𝑡
+
4𝐺𝑟

𝐻

𝜕𝐻

𝜕𝑥
(1 +

𝛺𝐻2(𝑠,𝑡)

4
),   

which, on integrating with respect to 𝑥, yields 

𝜕𝑝

𝜕𝑥
=

𝑔(𝑡)+16∫ 𝐻
𝜕𝐻

𝜕𝑡
𝑑𝑥

𝑥
0 + 𝐺𝑟{𝐻4(𝑥,𝑡)−𝐻4(0,𝑡)+

𝛺

6
 (𝐻6(𝑥,𝑡)−𝐻6(0,𝑡))}

𝐻4
 ,             (7.17) 

where 𝑔(𝑡) is an arbitrary function of  𝑡.   
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Integrating Eq. (7.17) from the inlet to an arbitrary point along the axis of the 

oesophagus, we obtain the axial pressure as 

𝑝(𝑥, 𝑡) = 𝑝(0, 𝑡) + ∫ {
𝑔(𝑡)+16∫ 𝐻(𝑠,𝑡)

𝜕𝐻(𝑠,𝑡)

𝜕𝑡
𝑑𝑠

𝑠1
0

+ 𝐺𝑟{𝐻4(𝑠1,𝑡)−𝐻
4(0,𝑡)+

𝛺

6
 (𝐻6(𝑠1,𝑡)−𝐻

6(0,𝑡))}

𝐻4(𝑠1,𝑡)
}

𝑥

0
𝑑𝑠1.     (7.18)  

Now 𝑔(𝑡) is evaluated by putting   𝑥 = 𝑙  in Eq. (7.18), which is given by 

𝑔(𝑡) =
𝑝(𝑙 ,𝑡)−𝑝(0,𝑡)−∫ {16∫ 𝐻(𝑠,𝑡)

𝜕𝐻(𝑠,𝑡)

𝜕𝑡
𝑑𝑠

𝑠1
0

+ 𝐺𝑟{𝐻4(𝑠1,𝑡)−𝐻
4(0,𝑡)+

𝛺

6
 (𝐻6(𝑠1,𝑡)−𝐻

6(0,𝑡))}}𝐻−4(𝑠1,𝑡)
𝑙

0
𝑑𝑠1

∫
1

𝐻4
𝑑𝑥

𝑙

0

.    (7.19) 

7.3.1 Pressure rise vs. time-averaged volume flow rate   

The volume flow rate for single wave transport is defined as 

𝑄(𝑥, 𝑡) = 2𝜂 ∫ 𝑢𝑟𝑑𝑟
𝐻

0
,   where 𝜂 =

𝑙

𝜆
 . In view of Eq. (7.15) it yields on integration,  

𝑄(𝑥, 𝑡) = 𝜂
𝐻4

8
{
𝐺𝑟

6
(6 + 𝛺𝐻2) −

𝜕𝑝

𝜕𝑥
} .                (7.20) 

Following are the existing relations between the wave and laboratory frames: 

𝑋 = 𝑥 − 𝑡, 𝑅 = 𝑟, 𝑈(𝑅, 𝑋) = 𝑢(𝑟, 𝑥, 𝑡) − 1,

𝑉(𝑅, 𝑋) = 𝑣(𝑟, 𝑥, 𝑡),          𝑞 = 𝑄(𝑥, 𝑡) − 𝐻2.  
}                                          (7.21)  

Note that the parameters on the left side are in the wave frame and those on the right side are 

in the laboratory frame.  

The time-averaged volume flow rate over a period in the laboratory frame for single 

wave propagation is defined to be  

𝑄̅(𝑥) = 1

𝜂
∫ 𝑄𝑑𝑡 
𝜂

0
,    

which, in view of fifth relation of Eq. (7.21), yields 

𝑄 =  𝑄̅ + 𝐻2 − 1

𝜂
∫ 𝐻2𝑑𝑡 
𝜂

0
,                    (7.22) 

Hence, from Eq. (7.20) we have   
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𝜕𝑝

𝜕𝑥
=

𝐺𝑟

6
(6 + 𝛺𝐻2) −

8

𝜂𝐻4
(𝑄̅ + 𝐻2 − 1

𝜂
∫ 𝐻2𝑑𝑡 
𝜂

0
) .                          (7.23) 

The pressure at an arbitrary point along the length of the oesophagus, in terms of the 

time averaged volume flow rate, is determined by integrating Eq. (7.23) from the inlet to an 

arbitrary point on the axis, as 

𝑝(𝑥, 𝑡) = 𝑝(0, 𝑡) + ∫ {
𝐺𝑟

6
(6 + 𝛺𝐻2) −

8

𝜂𝐻4
(𝑄̅ + 𝐻2 − 1

𝜂
∫ 𝐻2𝑑𝑡 
𝜂

0
)} 𝑑𝑥

𝑥

0
.                       (7.24)  

In terms of the time averaged volume flow rate, pressure rises per wavelength at the rate   

∆𝑃1 =  𝑝(1, 𝑡) − 𝑝(0, 𝑡) = ∫ {
𝐺𝑟

6
(6 + 𝛺𝐻2) −

8

𝜂𝐻4
(𝑄̅ + 𝐻2 − 1

𝜂
∫ 𝐻2𝑑𝑡 
𝜂

0
)} 𝑑𝑥

1

0
.          (7.25) 

7.3.2 Local wall shear stress vs. time-averaged volume flow rate 

The local wall shear stress at the wall is defined as 

𝜏𝑤 (𝑥, 𝑡) =
𝜕𝑢

𝜕𝑟
|𝑟=𝐻, 

which, in view of Eq. (7.15), gives  

𝜏𝑤 (𝑥, 𝑡) =
𝐻

2

𝜕𝑝

𝜕𝑥
−
𝐺𝑟𝐻

16
(8 + 𝛺𝐻2),                (7.26)  

Using Eq. (7.23), it yields the local wall shear stress, in terms of the time-averaged volume 

flow rate, as 

𝜏𝑤 (𝑥, 𝑡) =
𝐺𝑟𝛺𝐻3

48
−

4

𝜂𝐻3
(𝑄̅ + 𝐻2 − 1

𝜂
∫ 𝐻2𝑑𝑡 
𝜂

0
).                                                           (7.27)  

7.4 Results and Discussions   

In order to discuss qualitative effects of the various parameters involved in the present 

analysis we assume single bolus swallowing in the oesophagus capable of accommodating 

four boluses in its length at a time. Single bolus transport is a more practical phenomenon. A 

bolus is assumed to be contained within one peristaltic wavelength but may appear at 

different spatial positions at different instants. We randomly choose four time instants 𝑡 =
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0.26, 0.93, 1.69 and 2.78. The numerical evaluations of the analytical results are obtained for 

pressure, pressure rise per wavelength and local wall shear stress by setting zero pressure at 

the two ends of the oesophagus. We have plotted Figs. 2 – 5 to examine the effects of the 

Grashof number and the heat source/sink parameter on pressure, pressure rise per wavelength 

and local wall shear stress.   

 Figures 2(a)-(d) nicely describe the changes that take place in the pressure 

distribution in the oesophagus undergoing peristalsis with the variation in the Grashof 

number, 𝐺𝑟 (= 0.0, 3.5, 7.0 ) with 𝑙 = 4, 𝜙 = 0.7, 𝑘 = 0.01  and  𝛺 = 3.0 at various instants 

(a)  𝑡 = 0.26, (b) 𝑡 = 0.93, (c) 𝑡 = 1.69 and (d) 𝑡 = 2.78. At 𝑡 = 0.26, it is observed that the 

greater the Grashof number, the lower is the drop in pressure revealing a smaller requirement 

of pressure (Fig. 2a). On increasing the effect of heat transfer, it reveals that pressure 

reduces. Fig. 2(b) depicts the pressure distribution for position of bolus at 𝑡 = 0.93. One may 

note that pressure increases steadily behind the bolus which restrains the bolus from any 

possible retrograde motion. Pressure reaches a peak and then falls sharp to a minimum which 

again rises progressively to attain the final zero pressure. Thus, only one pair of peak and 

trough of pressure is seen throughout the length of oesophagus at a time. Similar is the 

observation when the positions of the bolus are at 𝑡 = 1.69 and 𝑡 = 2.78 with some 

differences of magnitude observed over time instants. Another remarkable observation is that 

the difference between the maximum and minimum pressures at end close to the cardiac 

sphincter is higher than that at the proximal end, which is expected due to dilating wave 

amplitude. Pressure distribution in this single bolus case is quite different from that for the 

train wave case as reported by Tripathi (2012) and Tripathi et al. (2013).  
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(a)  𝑡 = 0.26       (b) 𝑡 = 0.93 

           

(c) 𝑡 = 1.69      (d) 𝑡 = 2.78 

Fig. 7.2(a-d) Pressure variation versus axial distance for 𝐺𝑟 = 0.0, 3.5, 7.0, 𝑙 = 4, 𝜙 =
0.7, 𝑘 = 0.01, 𝛺 = 3.0 and at various instants (a)  𝑡 = 0.26, (b) 𝑡 = 0.93, (c) 𝑡 = 1.69, (d) 

𝑡 = 2.78. 

 

Figures 7.3(a)-(d) give an idea of the change in pressure distribution along the axis 

for 𝛺 = 0.0, 4.0, 8.0 with 𝑙 = 4, 𝜙 = 0.7, 𝑘 = 0.01, 𝐺𝑟 = 2.0 and at various instants of 

time 𝑡 = 0.26, 0.93, 1.69 and 2.78. It is observed that an increment in 𝛺 reduces the 

pressure irrespective of time. 
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   (a)  𝑡 = 0.26       (b) 𝑡 = 0.93 

 

                 

(c) 𝑡 = 1.69      (d) 𝑡 = 2.78 

Fig. 7.3(a-d) Pressure variation versus axial distance for 𝛺 = 0.0, 4.0, 8.0, 𝑙 = 4, 𝜙 =
0.7, 𝑘 = 0.01, 𝐺𝑟 = 2.0 and at various instants (a)  𝑡 = 0.26, (b) 𝑡 = 0.93, (c) 𝑡 = 1.69, (d) 

𝑡 = 2.78. 
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   (a)         (b) 

Fig. 7.4(a-b) Pressure rise per wavelength versus time averaged volume flow rate for 𝑙 = 4,
𝜙 = 0.6, 𝑘 = 0.01, 𝑡 = 1.5 (a) 𝐺𝑟 = 0.0, 3.0, 6.0 and 𝛺 = 4.0 (b) 𝛺 = 0.0, 8.0, 16.0 and 

𝐺𝑟 = 5.0.  

 

Figures 7.4(a)-(b) present the graphs of pressure rise per wavelength versus flow rate, 

which describe the effects of Grashof number and heat source/sink parameter. We set 𝐺𝑟 =

0.0, 3.0, 6.0 and 𝛺 = 4.0 for Fig. 7.4(a) and 𝛺 = 0.0, 8.0, 16.0 and 𝐺𝑟 = 5.0 for Fig. 7.4(b). 

Other parameters are set as 𝑙 = 4, 𝜙 = 0.6, 𝑘 = 0.01 and 𝑡 = 1.5 for both the figures. 

Examining the behaviour of the depicting figures, we see that the magnitude of the pressure 

rise per wavelength increases with either of the Grashof number and the heat source/sink 

parameter before attaining a particular value of the time-averaged volume flow rate but the 

trend reverses beyond that. It is also observed that pressure rise per wavelength varies 

linearly with the time-averaged volume flow rate. 

The characteristics of the local wall shear stress varying with the time-averaged 

volume flow rate, at the fixed axial coordinate 𝑥 = 0.93 for 𝐺𝑟 = 0.0, 5.0, 10.0 and 𝛺 =

0.0, 5.0, 10.0, is depicted in Fig. 7.5 and Table 7.1.  It is observed that the local wall shear 

stress varies inversely with the time-averaged volume flow rate. The effects of variation in 

 𝐺𝑟 and 𝛺 on the local wall shear stress is not significant, hence not visible in Figs. 7.5(a)-

(b). Therefore, it is given in Table 7.1. Analysing Fig. 7.5, we infer that 𝜏𝑤 is positive or 

negative depending on 𝑄̅.   
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  (a)       (b) 

Fig. 7.5(a-b) Local wall shear stress versus time averaged volume flow rate for 𝑙 = 4, 𝜙 =
0.7, 𝑘 = 0.01, 𝑥 = 0.93, 𝑡 = 0.93 (a) 𝐺𝑟 = 0.0, 5.0, 10.0 and 𝛺 = 5.0 (b) 𝛺 =
0.0, 5.0, 10.0 and 𝐺𝑟 = 5.0.  

 

   

𝑄̅ 0.0 0.2 0.4 0.6 0.8 1.0 

𝜏𝑤  at 𝐺𝑟 = 0.0, 𝛺 = 5.0 8.2042 0.2904 -7.6233 -15.5371 -23.4509 -31.3647 

𝜏𝑤  at 𝐺𝑟 = 5.0, 𝛺 = 5.0 8.2253 0.3115 -7.6022 -15.5161 -23.4298 -31.3436 

𝜏𝑤  at 𝐺𝑟 = 10.0, 𝛺 = 5.0 8.2463 0.3325 -7.5812 -15.4950 -23.4088 -31.3226 

𝜏𝑤  at 𝐺𝑟 = 5.0, 𝛺 = 0.0 8.2042 0.2904 -7.6233 -15.5371 -23.4509 -31.3647 

𝜏𝑤  at 𝐺𝑟 = 5.0, 𝛺 = 5.0 8.2253 0.3115 -7.6022 -15.5161 -23.4298 -31.3436 

𝜏𝑤  at 𝐺𝑟 = 5.0, 𝛺 = 10.0 8.2463 0.3325 -7.5812 -15.4950 -23.4088 -31.3226 

Table 7.1 Local wall shear stress versus time averaged volume flow rate for 𝑙 = 4, 𝜙 = 0.7,
𝑘 = 0.01, 𝑥 = 0.93 𝑎𝑛𝑑 𝑡 = 0.93.  

 

7.5 Conclusions 

A mathematical model for the study of heat transfer in swallowing of food bolus through the 

oesophagus is presented analytically. The numerical evaluation of analytical results is done 

for plotting graphs. It is observed that pressure drops when either of the Grashof number and 

the heat source/sink parameter increases along the oesophageal axis. We infer from that 
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smaller is the requirement of pressure to swallow when heat propagates in the oesophagus. 

Pressure-rise- per-wavelength increases with either of the Grashof number and the heat 

source/sink parameter before attaining a particular value of the time-averaged volume flow 

rate but the trend reverses beyond that. The Grashof number and the heat source/sink 

parameter have an insignificant impact on local wall shear stress. Pressure rise per 

wavelength and local wall shear stress vary inversely with the time-averaged volume flow 

rate. It is worthwhile to mention that the study of heat transfer effect on oesophageal 

swallowing is quite promising for oesophageal cancer treatment.  

 

 

 

 

 

 

 


