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Chapter 5 

Unsteady Peristaltic Transport of a Particle–Fluid 

Suspension: Application to oesophageal swallowing 

 

5.1 Introduction 

Peristalsis is a pumping mechanism by which a fluid can be transported through a 

tube/channel when contraction or expansion waves propagate along the tube wall. Most of 

the physiological fluids in humans or animals are propelled by continuous periodic muscular 

contractions and expansions of the ducts through which the fluids pass. Peristaltic pumping is 

involved in swallowing of food bolus through the oesophagus, embryo transport in the 

uterus, vasomotion of blood vessels, spermatic flows in the male reproductive tracts, 

transport of urine through the ureter, and also in some other engineering applications. The 

principle of peristalsis is used to design blood pump in heart lung machines, diabetic pump 

and roller pumps.  Numerous investigations (Shapiro et al., 1969; Li and Brasseur, 1993; 

Misra and Pandey, 2001; Hayat et al., 2002; Hariharan et al., 2008; Vajravelu et al., 2012; 

Ellahi et al., 2014; Nadeem et al., 2014) over several years have thrown light on peristalsis 

but it is still desirable to investigate it in new perspectives.  

 Study of the theory of particle-fluid mixture is immensely useful for understanding a 

number of physical phenomena including transportation of solid particles by liquids, mixing 

operations, particulate suspension theory of blood, flow of food suspension through 

oesophagus and intestines, urine flow through the ureters, transportation of liquid slurries in 

chemical and nuclear processing etc. Several industrial food processes involve flow of food 
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suspension in which the knowledge of flow properties is essential for assessing pumping 

requirements. Hung and Brown (1976) investigated various geometric and dynamic effects 

on peristaltic transport of suspended solid particles in a fluid in a two-dimensional channel. 

Drew (1979; 1983) presented a two-phase flow model that accounts for a mixture of 

dispersed small particles in a fluid as the working medium. Srivastava and Srivastava (1989) 

applied Drew’s model (1979) to a particle-fluid mixture flowing in a channel and obtained 

perturbation solution which satisfies the momentum equations for the case in which 

amplitude ratio is small. The flow of diseased urine modelled as particle-fluid suspension 

through the ureters was subsequently studied by Misra and Pandey (1994) who concluded 

that the mean flow induced by peristaltic motion is proportional to the square of the 

amplitude ratio and depends on the mean pressure gradient. Ureters are muscular ducts that 

propel urine from the kidneys to the bladder by peristalsis. Jimenez-Lozano et al. (2011) also 

presented a model for peristaltic flow in ureters due to a solitary wave with the objective of 

explaining the flow mechanics of a particle-fluid mixture. Mekheimer and Abdelmaboud 

(2008) theoretically analyzed peristaltic flow through a uniform and non-uniform annulus 

filled with particle-fluid suspension by long wavelength approximation. Popularity of the 

Drew’s model is revealed through a series of recent publications in biomechanics involving 

peristalsis (Bhatti and Zeeshan, 2016a; Bhatti et al., 2016; Bhatti et al., 2017a; Zeeshan et al., 

2017; Bhatti et al., 2017b; Bhatti et al., 2018) and rheological flow of blood (Bhatti et al., 

2016b; Zeeshan et al., 2018).   

 The digestive system is accountable for carrying out the food bolus from the mouth to 

the large intestine. In the oesophageal deglutition, food is ingested through the mouth and 

when swallowed passes into the pharynx which forces the food bolus rapidly into the 

oesophagus. This process ends with the transport of the bolus to the stomach by peristaltic 

contractions of the oesophageal wall. There are several food stuffs which are in the form of 

particulate suspensions in which the continuous phase is an aqueous solution. Examples are 

pasta products in sauces, yogurts with fruits, fruit preserves with seeds, vegetable soups, fruit 

in syrup, sugarcane juice with kiwifruit and many others homemade food items (Martinez-

Padilla, 2009). Generally, some of these food items have non-Newtonian behaviour but if the 

volume fraction of suspended particles is small then they behave as a Newtonian fluid. 

Moreover, any solid edible item is first masticated with teeth to break into very small 
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particles, is mixed with saliva or some liquid such as water which can drag into the abdomen 

through the oesophagus without harming it. What are the implications of the dragged solid 

particles from medical point of view is another aspect of the investigation. Hence study of 

particle-fluid suspension is extremely important in relation to oesophageal swallowing.    

Suspensions are defined as heterogeneous or homogeneous material, in which rigid or 

deformable particles are suspended in a liquid. Oesophageal swallowing of food suspensions 

is a two-phase flow model. This model is most appropriate if the dispersed particle phase 

behaves as continuum. The continuum theory of mixtures is also applicable to 

hydrodynamics of some biological systems. 

 Many solutions of peristaltic flows with various approximations are present in the 

literature. Authors (Shapiro et al., 1969; Li and Brasseur, 1993; Misra and Pandey, 2001) 

solved problems by using long wavelengths at low Reynolds number approximation in 

infinite and finite length tubes in which wave number (ratio of tube radius to wavelength) 

and Reynolds number tend to zero. Pandey et al. (2017) analyzed variation of pressure from 

the cervical to the distal end of the oesophagus during swallowing with these approximations. 

The novelty of the investigation lies in the fact that it theoretically discovered the reason for 

the pressure rise in the distal part of the oesophagus reported by Kahrilas et al. (1995) by 

using the anatomical measurements reported by Xia et al. (2009). The conclusion they drew 

was that the wave-amplitude increases progressively as the bolus is swallowed. With this 

idea Pandey and Tiwari (2017) investigated oesophageal swallowing for the Casson fluid.  

Achalasia is a dysfunction that causes inadequate lower sphincter relaxation of 

oesophagus. As a consequence of it oesophageal clearance is hindered. A possible treatment 

for patients to overcome this is by application of drugs or operation (Spechler and Castell, 

2001). This analysis is also planned to look for finding alternative or supportive ways for a 

remedial measure.  

In a two phase flow like this, a particulate matter suspension, which cannot move 

itself, is dragged by the fluid mixed with this. Since the two phases will have different 

velocities, there are several queries to investigate such as which one leads, which one lags 

behind, what is the mutual relation in the middle of the tube, whether it is different near the 

tubular boundary etc.   
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In light of the literature presented above and the discussion that followed, we aim to 

model swallowing of particulate suspension in a Newtonian fluid through oesophagus in 

order to investigate the impact of the presence and concentration of suspended particles in the 

food.  

The entire analysis is in dimensionless quantities. We use a regular perturbation 

method in terms of the wave number for oesophageal swallowing in which the wave number 

is small but not zero. Flow variables are presented in power series of the wave number to 

obtain closed form solution up to the first order. Since the wave number is very small and the 

higher order equations are very much involved, no further analyses will be carried out.  The 

velocities of the two phases will be deduced separately. Pressure equation will also be 

formulated. The interrelation of the two phases as well as the influence of the particle volume 

fraction is to be investigated.  

5.2 Mathematical formulation 

We consider oesophagus as a circular cylindrical tube of finite length. The geometrical form 

of the peristaltic wave in oesophageal wall was given by Li and Brasseur (1993) and 

modified by Misra and Pandey (2001). The observation of high pressure zone in lower part of 

oesophagus by Kahrilas et al. (1995) motivated Pandey et al. (2017), in view of the 

experimental reports of Xia et al. (2009), to reformulate the wall equation with dilating wave 

amplitude as 

 𝐻′(𝑥′, 𝑡′) = 𝑎 − ∅′𝑒𝑘
′𝑥′ cos2

𝜋

λ  
(𝑥′ − 𝑐𝑡′),                  (5.1)                            

where 𝐻′, 𝑥′, 𝑡′, 𝑎, ∅′, 𝑘′, 𝜆 and 𝑐 are the radial distance of wall, axial coordinate, time,  radius 

of the tube, amplitude of the wave, amplitude dilation parameter, wavelength and  wave 

velocity respectively (Fig. 5.1).    
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Fig. 5.1 The schematic diagram of wall positions of oesophagus when a peristaltic wave of 

slightly dilating amplitude propagates along it with velocity c.  

 

The governing equations are taken in the form of two sets of continuity and 

momentum equations, one each meant for the fluid and the particulate phase based on the 

two–phase model of Drew (1979). The governing equations for the fluid and particle phases 

in the axisymmetric cylindrical coordinates are as follows: 

Fluid phase:  

1

𝑟′

𝜕((1−𝐶)𝑟′𝑣′𝑓)

𝜕𝑟′
+
𝜕((1−𝐶)𝑢′𝑓)

𝜕𝑥′
= 0,                      (5.2) 

(1 − 𝐶)𝜌𝑓 (
𝜕𝑣′𝑓

𝜕𝑡′
+ 𝑣′𝑓

𝜕𝑣′𝑓

𝜕𝑟′
+𝑢′𝑓

𝜕𝑣′𝑓

𝜕𝑥′
) = −(1 − 𝐶)

𝜕𝑝′

𝜕𝑟′
+ (1 − 𝐶)𝜇𝑠(𝐶) {

𝜕

𝜕𝑟′
(
1

𝑟′

𝜕(𝑟′𝑣′𝑓)

𝜕𝑟′
) +

𝜕2𝑣′𝑓

𝜕𝑥′2
}  

                                                               +𝐶𝑆(𝑣′𝑝 − 𝑣
′
𝑓),              (5.3)  

(1 − 𝐶)𝜌𝑓 (
𝜕𝑢′𝑓

𝜕𝑡′
+ 𝑣′𝑓

𝜕𝑢′𝑓

𝜕𝑟′
+ 𝑢′𝑓

𝜕𝑢′𝑓

𝜕𝑥′
) = −(1 − 𝐶)

𝜕𝑝′

𝜕𝑥′
+ (1 − 𝐶)𝜇𝑠(𝐶) {

1

𝑟′

𝜕

𝜕𝑟′
(𝑟′

𝜕𝑢′𝑓

𝜕𝑟′
) +

𝜕2𝑢′𝑓

𝜕𝑥′2
}   

                        +𝐶𝑆(𝑢′𝑝 − 𝑢′𝑓),                                               (5.4) 

Particle phase: 

1

𝑟′

𝜕(𝐶𝑟′𝑣′𝑝)

𝜕𝑟′
+
𝜕(𝐶𝑢′𝑝)

𝜕𝑥′
 = 0,                      (5.5) 

𝐶𝜌𝑝 (
𝜕𝑣′𝑝

𝜕𝑡′
+ 𝑣′𝑝

𝜕𝑣′𝑝

𝜕𝑟′
+ 𝑢′𝑝

𝜕𝑣′𝑝

𝜕𝑥′
) = −𝐶

𝜕𝑝′

𝜕𝑟′
+ 𝐶𝑆(𝑣′𝑓 − 𝑣′𝑝),              (5.6) 
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𝐶𝜌𝑝 (
𝜕𝑢′𝑝

𝜕𝑡′
+ 𝑣′𝑝

𝜕𝑢′𝑝

𝜕𝑟′
+ 𝑢′𝑝

𝜕𝑢′𝑝

𝜕𝑥′
) = −𝐶

𝜕𝑝′

𝜕𝑥′
+  𝐶𝑆(𝑢′𝑓 − 𝑢′𝑝),               (5.7) 

where 𝑢′𝑓 , 𝑣′𝑓 , 𝑢′𝑝 , 𝑣′𝑝, 𝜌𝑓 , 𝜌𝑝 , 𝐶, (1 − 𝐶)𝜌𝑓 , 𝐶𝜌𝑝, 𝑝, 𝑆  and 𝜇𝑠(𝐶)  respectively represent 

axial velocity of the fluid phase, radial velocity of the fluid phase, axial velocity of the 

particle phase, radial velocity of the particle phase, actual density of the fluid, actual density 

of the particle material, volume fraction of the particles in the mixture, fluid phase density, 

particle phase density, pressure, drag coefficient of interaction for the force exerted by one 

phase on the other and the effective viscosity of suspension. For the present problem, the 

Stokes drag coefficient for a small particle at low Reynolds number,  𝑆 =
9𝜇0

4𝑟𝑝
2, and Einstein’s 

formula, 𝜇𝑠 = 𝜇0𝜇𝑟 , shall be used, where 𝜇0 is the fluid viscosity,  𝑟𝑝 is the particle radius 

and 𝜇𝑟(𝐶) = 1 +
5𝐶

2
 (Drew, 1979).  

 The following dimensionless parameters are now introduced into the analysis: 

𝑥 =
𝑥′

𝜆
,     𝑟 =

𝑟′

𝑎
,    𝑡 =

𝑐𝑡′

𝜆
 ,   ℎ =

𝐻′

𝑎
,   𝑘 = 𝑘′𝜆,  𝑢𝑓 =

𝑢′𝑓

𝑐
,

𝑢𝑝 =
𝑢′𝑝

𝑐
,  𝑣𝑓 =

𝑣′𝑓

𝑐𝛿
, 𝛿 =

𝑎

𝜆
,   𝑣𝑝 =

𝑣′𝑝

𝑐𝛿
 , 𝑄 =

𝑄′

𝜋𝑎2𝑐
,    𝜌 =

𝜌𝑝

𝜌𝑓
,

∅ =
∅′

𝑎
 ,   𝑝 =

𝑝′𝑎𝛿

𝜇𝑠𝑐
,    𝑅𝑒0 =

𝜌𝑓𝑐𝑎

𝜇0
, 𝑅𝑒 = 𝛿 𝑅𝑒0, 𝑀 =

9

4
(
𝑎

𝑟𝑝
)
2

,
}
 
 

 
 

                                        (5.8) 

where 𝛿, 𝑅𝑒0, 𝑅𝑒, 𝑎𝑛𝑑 𝑀   are respectively the wave number, the Reynolds number, the 

modified Reynolds number and the drag parameter. Introduced dimensionless quantities 

reduce the wall equation (5.1) and governing equations (5.2)-(5.7) to    

ℎ(𝑥, 𝑡) = 1 − ∅𝑒𝑘𝑥 cos2 𝜋(𝑥 − 𝑡) .                             (5.9)  

1

𝑟

𝜕((1−𝐶)𝑟𝑣𝑓)

𝜕𝑟
+
𝜕((1−𝐶)𝑢𝑓)

𝜕𝑥
= 0,                   (5.10) 

𝛿3(1 − 𝐶)𝑅𝑒0 (
𝜕𝑣𝑓

𝜕𝑡
+ 𝑣𝑓

𝜕𝑣𝑓

𝜕𝑟
+𝑢𝑓

𝜕𝑣𝑓

𝜕𝑥
) = −𝜇𝑟(1 − 𝐶)

𝜕𝑝

𝜕𝑟
+ 𝜇𝑟(1 − 𝐶) {𝛿

2 𝜕

𝜕𝑟
(
1

𝑟

𝜕(𝑟𝑣𝑓)

𝜕𝑟
) +

                                 𝛿4
𝜕2𝑣𝑓

𝜕𝑥2
} + 𝛿2 𝐶𝑀(𝑣𝑝 − 𝑣𝑓),                                                                 (5.11) 
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𝛿(1 − 𝐶)𝑅𝑒0 (
𝜕𝑢𝑓

𝜕𝑡
+ 𝑣𝑓

𝜕𝑢𝑓

𝜕𝑟
+ 𝑢𝑓

𝜕𝑢𝑓

𝜕𝑥
) = −𝜇𝑟(1 − 𝐶)

𝜕𝑝

𝜕𝑥
+ 𝜇𝑟(1 − 𝐶) {

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑓

𝜕𝑟
) + 𝛿2

𝜕2𝑢𝑓

𝜕𝑥2
}  

                                                                   +𝐶𝑀(𝑢𝑝 − 𝑢𝑓),            (5.12) 

1

𝑟

𝜕(𝐶𝑟𝑣𝑝)

𝜕𝑟
+
𝜕(𝐶𝑢𝑝)

𝜕𝑥
= 0,                    (5.13) 

𝜌𝛿3𝐶𝑅𝑒0 (
𝜕𝑣𝑝

𝜕𝑡
+ 𝑣𝑝

𝜕𝑣𝑝

𝜕𝑟
+ 𝑢𝑝

𝜕𝑣𝑝

𝜕𝑥
) = −𝜇𝑟𝐶

𝜕𝑝

𝜕𝑟
+ 𝛿2𝐶𝑀(𝑣𝑓 − 𝑣𝑝),            (5.14) 

𝜌𝛿𝐶𝑅𝑒0 (
𝜕𝑢𝑝

𝜕𝑡
+ 𝑣𝑝

𝜕𝑢𝑝

𝜕𝑟
+𝑢𝑝

𝜕𝑢𝑝

𝜕𝑥
) = −𝜇𝑟𝐶

𝜕𝑝

𝜕𝑥
+  𝐶𝑀(𝑢𝑓 − 𝑢𝑝).             (5.15) 

Boundary conditions are essential requirements for obtaining solution of a system of 

differential equations. However, in a practical problem such as one undertaken here, physics 

of fluid and solid particles have to be properly taken into consideration. For instance, no solid 

particle can stick to a solid boundary, else the definition of rigidity will be violated. In fact, it 

is dragged by the fluid which can stick to the boundary. Hence we cannot impose no-slip 

condition on solid particles at the boundary of the tubular wall.  The dimensionless boundary 

conditions, to be imposed on the fluid molecules and the solid particles for the sake of 

solution may be put as follows: 

   
𝑢𝑓|𝑟=ℎ

= 0,   
𝜕𝑢𝑓

𝜕𝑟
|
𝑟=0

= 0,   𝑣𝑓|𝑟=0
= 0,    𝑣𝑓|𝑟=ℎ

=
𝜕ℎ

𝜕𝑡
,

𝜕𝑢𝑝

𝜕𝑟
|
𝑟=0

= 0 ,     𝑣𝑝|𝑟=0 = 0.
}               (5.16)  

5.3 Perturbation solution  

To solve the problem, a regular perturbation expansion in terms of wave number, 𝛿 (≪ 1), is 

used and assumed that particle volume fraction, 𝐶, is low and is of the form 𝐶 = 𝛿𝐶(1). We 

consider the solutions for the fluid and particle velocities and the pressure of the form  

𝑢𝑓(𝑟, 𝑥, 𝑡) = 𝑢𝑓
(0) + 𝛿𝑢𝑓

(1) + 𝑂(𝛿2),                         (5.17) 

𝑣𝑓(𝑟, 𝑥, 𝑡) = 𝑣𝑓
(0) + 𝛿𝑣𝑓

(1) + 𝑂(𝛿2),               (5.18) 

𝑢𝑝(𝑟, 𝑥, 𝑡) = 𝑢𝑝
(0) + 𝛿𝑢𝑝

(1) + 𝑂(𝛿2),                         (5.19) 
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𝑣𝑝(𝑟, 𝑥, 𝑡) = 𝑣𝑝
(0) + 𝛿𝑣𝑝

(1) + 𝑂(𝛿2),                                                                               (5.20) 

𝑝(𝑟, 𝑥, 𝑡) = 𝑝(0) + 𝛿𝑝(1) + 𝑂(𝛿2).                                     (5.21) 

Substituting these expansions in Eqs. (5.10)-(5.15), and comparing the coefficients of 

like powers of 𝛿, we get a set of linear differential equations as given below.  

The zeroth-order system, i.e., coefficients of 𝛿0 equated on the two sides, is   

1

𝑟

𝜕(𝑟𝑣𝑓
(0))

𝜕𝑟
+
𝜕𝑢𝑓

(0)

𝜕𝑥
= 0,                                                     (5.22) 

𝜕𝑝(0)

𝜕𝑟
= 0,                                                               (5.23) 

𝜕𝑝(0)

𝜕𝑥
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑓
(0)

𝜕𝑟
),                                                   (5.24) 

subject to the boundary conditions:    

𝜕𝑢𝑓
(0)

𝜕𝑟
|
𝑟=0

= 0,   𝑢𝑓
(0)|

𝑟=ℎ
= 0,   𝑣𝑓

(0)|
𝑟=0

= 0, 𝑣𝑓
(0)|

𝑟=ℎ
=

𝜕ℎ

𝜕𝑡
 .                         (5.25) 

The first-order system, i.e., coefficients of 𝛿 equated on the two sides, is  

1

𝑟

𝜕(𝑟𝑣𝑓
(1))

𝜕𝑟
+
𝜕𝑢𝑓

(1)

𝜕𝑥
= 0,                                                                                                       (5.26) 

𝜕𝑝(1)

𝜕𝑟
= 0,                                                               (5.27) 

𝑅𝑒0 (
𝜕𝑢𝑓

(0)

𝜕𝑡
+ 𝑣𝑓

(0) 𝜕𝑢𝑓
(0)

𝜕𝑟
+ 𝑢𝑓

(0) 𝜕𝑢𝑓
(0)

𝜕𝑥
) = −

𝜕𝑝(1)

𝜕𝑥
−
3𝐶(1)

2

𝜕𝑝(0)

𝜕𝑥
+
3𝐶(1)

2

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑓
(0)

𝜕𝑟
) 

                           + 
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑓
(1)

𝜕𝑟
) +  𝑀𝐶(1)(𝑢𝑝

(0) − 𝑢𝑓
(0)),            (5.28) 

𝐶(1) (
1

𝑟

𝜕(𝑟𝑣𝑝
(0))

𝜕𝑟
+
𝜕𝑢𝑝

(0)

𝜕𝑥
) = 0,                                                                                            (5.29) 

𝐶(1)
𝜕𝑝(0)

𝜕𝑟
= 0,                                                                                                                     (5.30) 

𝐶(1)
𝜕𝑝(0)

𝜕𝑥
= 𝑀𝐶(1)(𝑢𝑓

(0) − 𝑢𝑝
(0)),                                                 (5.31) 

subject to  the boundary conditions: 
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𝑣𝑝
(0)|

𝑟=ℎ
= 0,   

𝜕𝑢𝑓
(1)

𝜕𝑟
|
𝑟=0

= 0, 𝑢𝑓
(1)|

𝑟=ℎ
= 0,

𝜕𝑢𝑝
(0)

𝜕𝑟
|
𝑟=0

= 0, 𝑣𝑓
(1)|

𝑟=0
= 0.         (5.32)  

We need to express analytical results in terms of time-averaged volume flow rate 

which is defined as �̅�(𝑥) = ∫ 𝑄(𝑥, 𝑡)𝑑𝑡
1

0
, with the volume flow rate as a sum of that for the 

two phases, i.e.,  

 𝑄(𝑥, 𝑡) = 𝑄𝑓(𝑥, 𝑡) + 𝑄𝑝(𝑥, 𝑡),                                                    (5.33) 

where 𝑄𝑓(𝑥, 𝑡) = 2∫ (1 − 𝐶)𝑢𝑓𝑟𝑑𝑟
ℎ

0
 and 𝑄𝑝(𝑥, 𝑡) = 2∫ 𝐶𝑢𝑝𝑟𝑑𝑟

ℎ

0
  are the instantaneous 

volume flow rates for the fluid and particle phases respectively. It is a tedious job due to 

several involved expressions. Hence, in order to avoid complicacies, we use the 

transformations from the unsteady laboratory frame to steady wave frame for this purpose 

only. All the other analyses will be later, from the section 5.3.1 onwards, carried out once 

again in the unsteady laboratory frame.   

The wave frame parameters, given on the left side of the equality sign, are related to 

the corresponding parameters in the laboratory frame, given on the right side, in the non-

dimensional form by  

𝑋 = 𝑥 − 𝑡,   𝑅 = 𝑟,   𝑈𝑖(𝑅, 𝑋) = 𝑢𝑖(𝑟, 𝑥, 𝑡) − 1,   

𝑉𝑖(𝑅, 𝑋) = 𝑣𝑖(𝑥, 𝑟, 𝑡),   𝑞 = 𝑄(𝑥, 𝑡) − ℎ2,
}            (5.34) 

where (𝑅, 𝑋), (𝑉𝑖 , 𝑈𝑖) and 𝑞 are respectively the coordinate system, the velocity field (𝑖 =

𝑓, 𝑝) and the flow rate in the wave frame.  

In view of (34), �̅�(𝑥) = 𝑞 + ∫ ℎ2𝑑𝑡
1

0
, and hence  

𝑞 = 𝑄(𝑥, 𝑡) − ℎ2 = �̅�(𝑥) − 1 + ∅ 𝑒𝑘𝑥 − 
3

8
 ∅2𝑒2𝑘𝑥.            (5.35) 

The regular perturbation expansions for 𝑄  and �̅�  are respectively  𝑄 = 𝑄(0) + 𝛿𝑄(1) +

𝑂(𝛿2) and �̅� = �̅�(0) + 𝛿�̅�(1) + 𝑂(𝛿2).  
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5.3.1 Solution of the zeroth-order system  

Integrating Eq. (5.24) with respect to 𝑟, in view of Eq. (5.23), and using the first boundary 

condition of Eq. (5.25), we get   

𝜕𝑢𝑓
(0)

𝜕𝑟
=

𝜕𝑝(0)

𝜕𝑥

𝑟

2
 ,           

which, on integrating once more with respect to 𝑟 and using the second boundary condition 

of Eq. (5.25), gives 

 𝑢𝑓
(0) =

1

4

𝜕𝑝(0)

𝜕𝑥
(𝑟2 − ℎ2).                                                                              (5.36) 

Solving continuity equation (5.22) together with Eq. (5.36) and using the third boundary 

condition of Eq. (5.25), it yields 

𝑣𝑓
(0) =

𝑟

4
{ℎ

𝜕ℎ

𝜕𝑥

𝜕𝑝(0)

𝜕𝑥
−
𝜕2𝑝(0)

𝜕𝑥2
(
𝑟2

4
−
ℎ2

2
)}.                (5.37) 

Now applying the fourth boundary condition of (5.25) in Eq. (5.37) and simplifying, we get 

ℎ3

16

𝜕2𝑝(0)

𝜕𝑥2
+
ℎ2

4

𝜕ℎ

𝜕𝑥

𝜕𝑝(0)

𝜕𝑥
=

𝜕ℎ

𝜕𝑡
,   

from which, the zeroth order pressure gradient is derived as  

𝜕𝑝(0)

𝜕𝑥
=

𝑔(𝑡)+16∫ ℎ(𝑠,𝑡)
𝜕ℎ(𝑠,𝑡)

𝜕𝑡
𝑑𝑠

𝑥
0

ℎ
4  ,                      (5.38) 

where 𝑔(𝑡) is an arbitrary function of  𝑡.  

Therefore, zeroth order pressure at an arbitrary point along the length of the oesophagus is 

given by  

𝑝(0)(𝑥, 𝑡) = 𝑝(0)(0, 𝑡) + ∫
𝑔(𝑡)+16∫ ℎ(𝑠,𝑡)

𝜕ℎ(𝑠,𝑡)

𝜕𝑡
𝑑𝑠

𝑥1
0

ℎ
4(𝑥1,𝑡)

𝑑𝑥1 
𝑥

0
.                  (5.39) 

The arbitrary function 𝑔(𝑡) may be evaluated by putting 𝑥 = 𝑙 in Eq. (5.39) as 
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 𝑔(𝑡) = {𝑝(0)(𝑙, 𝑡) − 𝑝(0)(0, 𝑡) + 16 ∫
∫ ℎ(𝑠,𝑡)

𝜕ℎ(𝑠,𝑡)

𝜕𝑡
𝑑𝑠

𝑥1
0

ℎ
4(𝑥1,𝑡)

𝑑𝑥1 
𝑙

0
} {∫

1

ℎ
4(𝑥1,𝑡)

𝑑𝑥1 
𝑙

0
}
−1

.          (5.40) 

Further, the zeroth order flow rate, in view of Eq. (5.33), may be given by 

 𝑄(0) = 𝑄𝑓
(0)
+ 𝑄𝑝

(0)
= 2∫ 𝑢𝑓

(0)𝑟𝑑𝑟
ℎ

0
+ 0 = −

1

8

𝜕𝑝(0)

𝜕𝑥
ℎ4. 

Note that, in view of Eq. (5.35), we have  𝑄(0) = �̅�(0) − 1 + ∅ 𝑒𝑘𝑥 − 
3

8
 ∅2𝑒2𝑘𝑥 + ℎ2 . 

Therefore,  

𝜕𝑝(0)

𝜕𝑥
= −8{

�̅�(0)−1+∅ 𝑒𝑘𝑥− 
3

8
 ∅2𝑒2𝑘𝑥+ℎ2

ℎ4
} =  𝑃0  (𝑠𝑎𝑦).                      (5.41) 

Hence, from Eqs. (5.36), (5.37) and (5.41), the zeroth order axial and radial velocities of the 

fluid, in terms of zeroth order time-averaged volume flow rate, are given by  

 𝑢𝑓
(0) =

𝑃0

4
(𝑟2 − ℎ2).                       (5.42) 

𝑣𝑓
(0) =

𝑟

4
{ℎ

𝜕ℎ

𝜕𝑥
𝑃0 −

𝜕𝑃0

𝜕𝑥
(
𝑟2

4
−
ℎ2

2
)}.                 (5.43) 

5.3.2 Solution of the first-order system 

From Eqs. (5.31) and (5.42), the zeroth order axial velocity of the solid particles is given by 

𝑢𝑝
(0) =

𝑃0

4
(𝑟2 − ℎ2 −

4

𝑀
).                (5.44) 

Integrating continuity equation (5.29) together with Eq. (5.44) with respect to 𝑟 and using the 

first boundary condition of (5.32), the zeroth order radial velocity of the particle is obtained as 

𝑣𝑝
(0) =

𝑟

4
{𝑃0ℎ

𝜕ℎ

𝜕𝑥
−
𝜕𝑃0

𝜕𝑥
(
𝑟2

4
−
ℎ2

2
−

2

𝑀
)}.                 (5.45) 

Equations (5.26)-(5.28) of the first order system are solved similarly as described in the 

solution of zeroth order system.  
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  The first order solutions for the axial and radial velocities of the fluid (the details are 

given in the Appendix 5.A) are given by 

𝑢𝑓
(1) = 𝑁1(𝑟

6 − ℎ6) + 𝑁2(𝑟
4 − ℎ4) + (𝑁3 +

𝑃1+𝐶
(1)𝑃0

4
) (𝑟2 − ℎ2).            (5.46) 

𝑣𝑓
(1) = −

1

8

𝜕𝑁1

𝜕𝑥
(𝑟7 − 4ℎ6𝑟) −

1

6

𝜕𝑁2

𝜕𝑥
(𝑟5 − 3𝑟ℎ4) −

1

4
(
𝜕𝑁3

𝜕𝑥
+
1

4

𝜕𝑃1

𝜕𝑥
+
𝐶(1)

4

𝜕𝑃0

𝜕𝑥
) (𝑟3 − 2𝑟ℎ2)     

 +
1

4
(12𝑁1 + 8𝑁2ℎ

3 + 2𝑁3ℎ + 𝑃1ℎ + 𝑃0ℎ𝐶
(1))

𝜕ℎ

𝜕𝑥
𝑟.                      (5.47) 

The expressions for 𝑃1, 𝑁1, 𝑁2 and 𝑁3 are given by 

𝑃1 =
𝜕𝑝(1)

𝜕𝑥
= −6𝑁1ℎ

4 −
16

3
𝑁2ℎ

2 − 4𝑁3 −
𝑃0𝐶

(1)

ℎ2
(
8

𝑀
+ ℎ2) −

8�̅�(1)

ℎ4
,            (5.48) 

where 

𝑁1 =
𝑅𝑒0

1152
𝑃0

𝜕𝑃0

𝜕𝑥
.                (5.49) 

𝑁2 =
𝑅𝑒0

16
(
1

3

𝜕𝑃0

𝜕𝑡
−
3𝑃0

8

𝜕𝑃0

𝜕𝑥
ℎ2).               (5.50) 

𝑁3 = 𝑅𝑒0 (
ℎ2

12

𝜕𝑃0

𝜕𝑡
−
𝑃0

8

𝜕ℎ

𝜕𝑡
ℎ +

3𝑃0

32

𝜕𝑃0

𝜕𝑥
ℎ4 +

𝑃0
2ℎ3

32

𝜕ℎ

𝜕𝑥
),             (5.51)  

and �̅�(1) = 𝑄(1) = −
3

4
𝑁1ℎ

8 −
2

3
𝑁2ℎ

6 − (
𝑁3

2
+
1

8

𝜕𝑝(1)

𝜕𝑥
+
𝑃0𝐶

(1)

8
) ℎ4 −

𝑃0𝐶
(1)

𝑀
ℎ2  (see Appendix 

5.B)  

The zeroth and first order solutions of those given in Eqs. (5.17)-(5.20), together 

constitute the required results for the fluid and particle velocities. Therefore, the axial and 

radial velocities of the fluid in the fixed frame are 

𝑢𝑓 =
𝑃0

4
(𝑟2 − ℎ2) + 𝛿 {𝑁1(𝑟

6 − ℎ6) + 𝑁2(𝑟
4 − ℎ4) + (𝑁3 +

𝑃1+𝐶
(1)𝑃0

4
) (𝑟2 − ℎ2)}.     (5.52) 

𝑣𝑓 =
𝑟

4
{ℎ

𝜕ℎ

𝜕𝑥
𝑃0 −

𝜕𝑃0

𝜕𝑥
(
𝑟2

4
−
ℎ2

2
)} + 𝛿 {−

1

8

𝜕𝑁1

𝜕𝑥
(𝑟7 − 4ℎ6𝑟) −

1

6

𝜕𝑁2

𝜕𝑥
(𝑟5 − 3𝑟ℎ4) −

1

4
(
𝜕𝑁3

𝜕𝑥
+
1

4

𝜕𝑃1

𝜕𝑥
+

             
𝐶(1)

4

𝜕𝑃0

𝜕𝑥
) (𝑟3 − 2𝑟ℎ2) +

1

4
(12𝑁1 + 8𝑁2ℎ

3 + 2𝑁3ℎ + 𝑃1ℎ + 𝑃0ℎ𝐶
(1))

𝜕ℎ

𝜕𝑥
𝑟}.          (5.53) 
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5.3.3 Pressure gradient 

The perturbation expansion for pressure gradient is  

𝜕𝑝

 𝜕𝑥
=

𝜕𝑝(0)

𝜕𝑥
+ 𝛿

𝜕𝑝(1)

𝜕𝑥
+ 𝑂(𝛿2).  

Therefore, the solution for pressure gradient in terms of time-averaged volume flow rate, in 

view of Eqs. (5.41) and (5.48), yields 

𝜕𝑝

𝜕𝑥
= −8(

�̅�(0)−1+∅ 𝑒𝑘𝑥− 
3

8
 ∅2𝑒2𝑘𝑥+ℎ2

ℎ4
) − 𝛿 {6𝑁1ℎ

4 +
16

3
𝑁2ℎ

2 + 4𝑁3 −

                                                           8𝐶(1) (
�̅�(0)−1+∅ 𝑒𝑘𝑥− 

3

8
 ∅2𝑒2𝑘𝑥+ℎ2

ℎ6
)(

8

𝑀
+ ℎ2) +

8�̅�(1)

ℎ4
}.     (5.54) 

5.3.4 Stream function 

The flow patterns of fluid are also given by counters of the constant stream function, 𝛹𝑓, in 

the moving frame defined as 

 𝑑𝛹𝑓 = 2𝑅𝑈𝑓𝑑𝑅 − 2𝑅𝑉𝑓𝑑𝑋.  

Using the transformation defined in Eq. (5.34), the stream function, 𝜓𝑓(𝑟, 𝑥, 𝑡), in the fixed 

frame may be obtained by the solution of the differential equation, 𝑑𝜓𝑓 = 2𝑟(𝑢𝑓 − 1)𝑑𝑟 −

2𝑟𝑣𝑓𝑑𝑥. This is an exact differential equation; therefore stream function may be obtained by 

evaluating 

2∫ [
𝑃0

4
(𝑟2 − ℎ2) + 𝛿 {𝑁1(𝑟

6 − ℎ6) + 𝑁2(𝑟
4 − ℎ4) + (𝑁3 +

𝑃1+𝐶
(1)𝑃0

4
) (𝑟2 − ℎ2)} − 1] 𝑟𝑑𝑟.  

Thus we have 

𝜓𝑓(𝑟, 𝑥, 𝑡) = 𝑟2 [
𝑃0

8
(𝑟2 − 2ℎ2) + 𝛿 {

𝑁1

4
(𝑟6 − 4ℎ6) +

𝑁2

3
(𝑟4 − 3ℎ4) +

1

8
(4𝑁3 + 𝑃1 +

                            𝐶(1)𝑃0)(𝑟
2 − 2ℎ2)} − 1].                  (5.55) 
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For wave number, 𝛿 → 0,  Eqs. (5.52)-(5.55) reduce to the corresponding equations derived 

by Shapiro et al. (1969).  

5.4 Discussions and results 

In order to have an estimate of applicability of the analytical work presented here, we 

consider the length and the diameter of the oesophagus as 25-30 cm (Lamb and Griffin, 

2005) and 1.8-2.1 cm (Joohee et al., 2012) respectively. Suspended particles have uniform 

radii 0.04 cm.We also consider that oesophagus can contain two boluses at a time while 

swallowing.  

With these dimensions of the oesophagus, the following parameters are evaluated as 

𝛿 = 0.06  and 𝑀 = 1139. The analytical results are expressed in the fixed frame up to the 

first order of the time-averaged volume flow rate�̅� = �̅�(0) + 𝛿�̅�(1). Then computer codes are 

developed by substituting �̅�(0) = �̅� − 𝛿�̅�(1)  in the solutions (5.52)-(5.55) for numerical 

evaluations of the analytical results. Diagrams are drawn for the pressure gradient, the axial 

and radial velocities and the streamlines of the flow shown in Figs. 2-8 with various 

parameters as assumed below.  

The axial velocity of the fluid together with that of the solid particles along the axis of 

the oesophagus is presented in Fig. 5.2 at the fixed radial distance 𝑟 = 0.3 and the temporal 

values (a) 𝑡 = 0.0  (b)  𝑡 = 0.4  . This figure is based on Eqs. (5.44) and (5.52). Other 

parameters are taken as  𝛿 = 0.06, 𝑘 = 0.02, 𝐶 = 0.12, ∅ = 0.7, 𝑅𝑒0 = 5, �̅� = 1.5, �̅�(1) =

15, 𝑀 = 1139. At  𝑡 = 0.0  (Fig. 5.2a), we observe that the axial velocity of the fluid is 

greater than that of the solid particles almost everywhere. But analyzing Eqs. (5.44) and 

(5.52), we infer that at the wall the axial velocity of the fluid is zero but the suspended 

particulate material has non-zero positive axial velocity. This means that the axial velocity of 

the suspended particles near the tube wall is more than that of the fluid velocity. It has been 

illustrated in Fig. 5.3 by plotting graphs of the axial velocities close to the tube wall. In Fig. 

5.2b, we also observe that the axial velocity is negative in the regions close to maximum 

occlusions giving way to instantaneous backward flow. Backward flow is found in a small 

region with maximum occlusion. Therefore, the net flow will be positive. Further, it is 

observed that the magnitude of the velocity at the second occlusion point is more than at the 

first occlusion point which is due to dilating wave amplitude. 
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(a)  𝑡 = 0.0                    

                               

                        

                                                            (b) 𝑡 = 0.4  

Fig. 5.2(a-b) Axial velocity profile of the fluid and solid particles versus the tube length at 

the fixed radial distance 𝑟 = 0.3 and (a) 𝑡 = 0.0  (b) 𝑡 = 0.4 . Other parameters are taken as  

𝛿 = 0.06,   𝑘 = 0.02, 𝐶 = 0.12, ∅ = 0.7, 𝑅𝑒0 = 5, �̅� = 1.0, �̅�(1) = 15, 𝑀 = 1139 .  

 

                   



                         Chapter 5: Unsteady peristaltic transport of a particle–fluid suspension 

82 
 

     

Fig. 5.3 The radial profiles of the axial velocity respectively of the fluid and solid particles 

versus the tube radius at the fixed axial position 𝑥 = 0.6 and 𝑡 = 0.4. Other parameters are 

taken as  𝛿 = 0.06,   𝑘 = 0.02, 𝐶 = 0.12, ∅ = 0.7, 𝑅𝑒0 = 5, �̅� = 1.5, �̅�(1) = 20, 𝑀 =
1139 .   

 

The impact of dilating wave amplitude on the axial velocity is depicted in Fig. 5.4 in 

which the various parameters are taken as 𝑘 = 0.0, 0.05, 0.1, 𝑥 = 0.3, 𝑡 = 0.9, 𝛿 =

0.06,   𝐶 = 0.12, ∅ = 0.7, 𝑅𝑒0 = 5, �̅� = 1.5, �̅�(1) = 20, 𝑀 = 1139 . It is observed that 

the greater the dilation parameter, the higher is the axial velocity at the fixed axial positions 

for both the fluid and particles velocities.  

 

 

                                                           (a) 
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(b)        

Fig. 5.4(a-b) Radial profiles the axial velocity respectively of (a) the fluid and (b) solid 

particles versus the radial distance at the fixed axial position 𝑥 = 0.3 and time  𝑡 = 0.9 

showing the impact of amplitude dilation parameter 𝑘. Other parameters are taken as 𝛿 =
0.06,   𝐶 = 0.12, ∅ = 0.7, 𝑅𝑒0 = 5, �̅� = 1.5, �̅�(1) = 20, 𝑀 = 1139 . Solid, dashed and 

dashed dotted line correspond respectively to 𝑘 = 0.0, 𝑘 =  0.05 and 𝑘 = 0.1.  

 

 

Figure 5.5(a) illustrates the impact of the particulate suspension on the axial velocity 

of the fluid along the radius at a specific axial location 𝑥 = 0.3 and at an instant 𝑡 = 0.9 

comprising three distinct curves for different volume fractions 𝐶 = 0.0, 0.12, 0.24. We take 

other parameters as 𝑘 = 0.02, ∅ = 0.8, 𝑅𝑒0 = 5,   �̅�(1) = 20. Examining the behaviour of 

the present figure, we observe that the axial velocity of the fluid decreases with increasing 

volume fraction. The curves are all analogous in the sense that they decrease from their 

individual maximum at the axis to the minimum near the wall surface as expected. We draw 

another graph for the axial fluid velocity with the same parameters as in Fig. 5.5(a) except 

for 𝛿 = 0, i.e., particle-free fluid which is shown in Fig. 5.5(b).  Comparing Figs. 5.5(a) and 

5.5(b), we find that the maximum axial velocity of particle-fluid suspension with non-zero 

wave number is more than that of particle-free fluid with zero wave number.  
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                                                           (a) 

 

   

(b)                

Fig. 5.5(a-b) The impact of 𝛿 on the relation between the axial velocity of the fluid and the 

radial distance for different volume fractions at the fixed axial position 𝑥 = 0.3 for   𝑘 =
0.02, ∅ = 0.8, 𝑅𝑒0 = 5, �̅� = 1.5, �̅�(1) = 20, 𝑡 = 0.9, 𝑀 = 1139, (a) 𝛿 = 0.06, (b) 𝛿 = 0.0. 

Solid line, dashed line and dashed dotted line respectively correspond to 𝐶 = 0.0, 𝐶 =  0.12 

and 𝐶 = 0.24.      

 

The characteristics of the radial velocity of the fluid varying radially at the fixed axial 

position 𝑥 = 0.2  for 𝑡 = 0.3  and different volume fractions ( 𝐶 = 0.0, 0.12, 0.24)  are 

exhibited in Fig. 5.6. Analyzing all the curves of the depicting figure, we see that all the 

curves diminish from zero on the axis as these move away from it and finally move towards 

the wall to attain some finite value on the wall surface. These natures of curves reflect the 

presence of wall motion in the transverse direction. It is interesting to see that all the curves 

become concave near the wall which means that the radial velocity changes its nature near 
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the wall. A rise in the volume fraction of suspended particles diminishes the magnitude of the 

radial velocity of the fluid.    

 

            

Fig. 5.6 Radial velocity profile of the fluid along the radial distance for different volume 

fraction of particles at 𝑥 = 0.2  for  𝑡 = 0.3,   𝑘 = 0.02, ∅ = 0.6, 𝑅𝑒0 = 5, 𝛿 = 0.06, �̅� =
1.5,  �̅�(1) = 20,𝑀 = 1139 . Solid line, dashed line and dashed dotted line correspond 

respectively to 𝐶 = 0.0, 𝐶 =  0.12 and 𝐶 = 0.24. 

 

Figure 5.7(a) displays the pressure gradient of the fluid-particle mixture versus the 

time-averaged volume flow rate �̅� for different volume fractions (𝐶 = 0.0, 0.12, 0.24) at 

the fixed axial position and the fixed time. We randomly choose the axial position 𝑥 = 0.8 

and the time   𝑡 = 0.4 . For the qualitative interpretation of the analytical result we take other 

parameters as  𝑘 = 0.02, ∅ = 0.6, 𝑅𝑒0 = 5,   �̅�
(1) = 15. A close observation reveals that as 

the volume fraction increases from 0.0 to 0.24, the pressure gradient too declines. This means 

that the dispersed small particles in the fluid medium affect the pumping characteristics. It is 

also observed that below some fixed flow rate, the pressure gradient is adverse, i.e.  
𝜕𝑝

𝜕𝑥
> 0; 

but above that the pressure gradient is favorable, i.e.  
𝜕𝑝

𝜕𝑥
 < 0. It is inferred that a positive 

pressure gradient hinders the flow while a negative one enhances it. In Fig. 5.7(b), 
𝜕𝑝

𝜕𝑥
 vs. �̅� is 

also plotted under the same condition as in Fig. 5.7(a) but at the wave number, 𝛿 = 0.  

Comparing Fig. 5.7(b) with 5.7(a), we note that the pressure gradient varies linearly with the 

volume flow rate in Fig. 5.7b but not in Fig. 5.7(a). The reason behind this is that the 

expressions defined by 𝑁1, 𝑁2  and 𝑁3 contain quadratic terms in �̅� but when  𝛿 = 0, these 

terms are absent in the pressure gradient and only the linear term of  �̅� is left.  
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There are several diseases like achalasia, oesophageal stricture and oesophageal 

tumors in which swallowing is very difficult. Pressure gradient profile suggests that patients 

suffering from these diseases may be advised to consume food items with less particulate 

suspensions. Larger pressure gradient for low volume fraction is advised for comfortable 

swallowing. 

 

 

               

(a) 

    

                          (b)         

Fig. 5.7(a-b) The effect of 𝛿 on the relation between the pressure gradient and the time-

averaged volume flow rate for different volume fraction of particles with 𝑘 = 0.02,   ∅ = 0.6,
 𝑅𝑒0 = 5, �̅�(1) = 15, 𝑀 = 1139, 𝑥 = 0.8, 𝑡 = 0.4,  (a)  𝛿 = 0.06,  (b) 𝛿 = 0.0  Solid line, 

dashed line and dashed dotted line correspond to 𝐶 = 0.0, 𝐶 =  0.12  and  𝐶 = 0.24 

respectively. 
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                                                    (a) 

                

                                                     (b) 

               

                                                     (c)                           
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                                                 (d)      

Fig. 5.8(a-d) Streamlines in the fixed frame with  𝑘 = 0.02, 𝐶 = 0.12,   ∅ = 0.6,  𝑅𝑒0 = 5,
𝛿 = 0.06, �̅�(1) = 20, 𝑀 = 1139, 𝑡 = 1.0  at different time-averaged volume flow rates 

(a) �̅� = 1.2, (b) �̅� = 3.2, (c) �̅� = 5.0 and (d) �̅� = 5.1. 

 

The fluid motion is also described with the help of streamlines and stream functions. 

A streamline is an imaginary curve in the flow field of the fluid such that the tangent at each 

of the points of the curve gives the direction of the local velocity at that point at an instant. 

Streamlines in the fixed frame with  𝑘 = 0.02, ∅ = 0.6,  𝑅𝑒0 = 5, 𝛿 = 0.06,  �̅�
(1) = 20,

𝑀 = 1139, 𝑡 = 1.0 at different time-averaged volume flow rates (�̅� = 1.2 , 3.2, 5.0, 5.1) 

are shown in Fig. 5.8. A close look of this figure reveals that the fluid streamlines are 

generally similar to the shape of the wall for small �̅� (Fig. 5.8a). Another observation is that 

when �̅� is increased, the streamlines change its shape and above a certain �̅� , the central 

streamline splits to engulf a ring-shaped bolus of the fluid as a closed streamline as depicted 

in Figs. 5.8(b)-(d). This trapped bolus is now pushed ahead along with the peristaltic wave. 

This leads us to infer that trapping takes place at high flow rates. This phenomenon, termed 

as trapping, was first discovered by Shapiro et al. (1969).  

5.5 Conclusions    

Peristaltic transport of particle-fluid suspension through oesophagus is investigated 

theoretically by regular perturbation technique. The impact of volume fraction of particles on 

the pressure gradient and the velocity is examined and streamline patterns are obtained. The 

presence of particles affects the pumping performance and velocity.  
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It is observed that the axial velocity of the fluid is greater than that of the solid 

particles almost everywhere. However, at the wall the axial velocity of the fluid is zero due to 

the no-slip condition imposed on it; but the suspended particulate material has non-zero 

positive axial velocity. Thus, that the axial velocity of the suspended particles near the tube 

wall is more than that of the fluid velocity. It is further observed that the axial velocity is 

negative in the regions close to maximum occlusions giving way to instantaneous backward 

flow. Backward flow is created in a small region with maximum occlusion. Hence, the net 

flow will be positive. Further, the magnitude of the velocity at the second occlusion point is 

more than at the first occlusion point which is due to dilating wave amplitude. 

It is also inferred that that the maximum axial velocity of particle-fluid suspension 

with non-zero wave number is more than that of particle-free fluid with zero wave number.  

An increment in volume fraction of suspended particles diminishes the pressure 

gradient and hence also the axial and radial velocities. The research endorses the advice of 

the doctors to the patients suffering from achalasia, oesophageal stricture and oesophageal 

tumors to consume liquid or food items with lesser solid contents.  

Streamline patterns are changed by increasing flow rate while trapping occurs at high 

flow rates.  

Appendix 5.A 

Using Eqs. (5.42) and (5.44) in Eq. (5.28), we have 
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Integrating Eq. (5.A1) with respect to 𝑟 and using the second boundary condition of Eq. 

(5.32), we get 
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Integrating Eq. (5.A2) with respect to 𝑟 and using the third boundary condition of Eq. (5.32), 

we obtain 𝑢𝑓
(1) given in Eq. (5.46). Further, using Eq. (5.46) in Eq. (5.26) and integrating it 

with respect to 𝑟 under the fifth boundary condition of Eq. (5.32), we get 𝑣𝑓
(1) given by Eq. 

(5.47). 

Appendix 5.B 

In view of Eq. (5.33), the first order volume flow rate in the fixed frame is 𝑄(1) = 𝑄𝑓
(1)
+

𝑄𝑝
(1)
,  where 𝑄𝑓
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= 2∫ 𝑢𝑓
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ℎ
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− 2𝐶(1) ∫ 𝑢𝑓

(0)𝑟𝑑𝑟
ℎ

0
 and  𝑄𝑝

(1)
= 2𝐶(1) ∫ 𝑢𝑝

(0)𝑟𝑑𝑟
ℎ

0
. 

Therefore, using Eqs. (5.42), (5.44) and (5.46), we derive the first order volume flow rate as 

𝑄(1) = −
3

4
𝑁1ℎ

8 −
2

3
𝑁2ℎ
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8
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𝑃0𝐶
(1)

𝑀
ℎ2.                               (5.B1) 

In view of Eq. (5.35), it is also noted that the first order time averaged volume flow rate, 

�̅�(1) = 𝑄(1).       

 

           

               

 

 


