
  
 

 

 

Chapter 3 

Peristaltic Transport of Herschel-Bulkley Fluids 

in Circular Cylindrical Tubes Caused by Dilating 

Peristaltic Waves: Application to achalasia  

 

3.1 Introduction   

Physiological fluids in living beings are pumped rhythmically by continuous and alternate 

contractions and relaxations of the walls of the ducts in which fluid pass. This physiological 

phenomenon is termed as peristaltic pumping. Peristaltic waves causing transportation of 

the fluid through the muscular tubes is indeed an essential biological mechanism 

responsible for physiological functions of the various organs of the human body. Peristalsis 

plays the primary role in the flows of food bolus through oesophagus, chyme through 

intestines, spermatic fluid through vas deference, embryo through uterine cavity, ovum 

through female fallopian tube, urine through ureter and blood through small blood vessels. 

It is an inherent property of many tubular organs of the human body. In some biomedical 

instruments, such as heart-lung machines, peristaltic motion is used to pump blood and 

other biological fluids.        

 Herschel-Bulkley fluids are non-Newtonian fluids that possess a yield stress due to 

which during deformation the fluid has a plug flow region at times when the local shear is 

below the yield stress. Once the yield stress is exceeded, the fluid flows with a non-linear 

stress-strain relationship as a shear-thickening or a shear thinning fluid (Fig. 3.1).  Raisin 

paste, minced fish paste etc. are some examples of edible fluids of this type. Some more 

edible semi-fluids such as cornstarch in water (dilatant), peanut butter, ketchup (pseudo 
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plastic) and tomato puri, melted chocolate (Bingham fluid) are special cases of Hurschel-

Bulkley fluid (Bourne, 2002). The flow behaviours of these fluids can be examined by this 

model by considering special cases. Some more fluids possessing this property are paints, 

plastics, slurries, pharmaceutical products, polymeric solutions, paper pulp and semi-solid 

materials (Alexandrou et al., 2001).  The proposed model can also be valid for industrial 

and clinical purposes.  

 The human oesophagus is a flexible muscular tube extending from pharynx to 

stomach. Its length is about 25-30 cm (Lamb and Griffin, 2005) and the diameter lies 

between 1.8 cm and 2.1 cm (Joohee et al., 2012). The oesophagus is an upper part of the 

digestive system. Food is ingested through the mouth and when swallowed passes first into 

the pharynx and then into the oesophagus. The process of swallowing is a mechanical 

phenomenon. It begins with chewing and mixing of food in the oral cavity. The complex 

structural motions within the pharynx forces the food bolus rapidly into the oesophagus and 

then the process ends with the transport of the bolus to the stomach by the peristaltic 

contractions of the oesophageal wall. 

 

                          

                Fig. 3.1 Pictorial demonstration of Herschel-Bulkley fluid     

 

    Several investigations on the peristaltic transport through circular cylindrical tubes 

have been carried out by various researchers for Newtonian and non-Newtonian fluid. Li 

and Brasseur (1993) raised an issue of prime concern that the oesophageal wall undergoes 

contraction followed by relaxation; but in most of the studies the wall is considered to 

oscillate about the mean position, i.e., the stationary boundary. They incorporated this 

correction so that the model can be applied to oesophageal swallowing. It was further 
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improved by a more suitable model by Misra and Pandey (2001). In all of the models for 

oesophageal swallowing, the wave amplitude was assumed to be constant by the 

investigators including Li and Brasseure (1993), Misra and Pandey (2001) and Pandey and 

Tripathi (2010c, 2011b).  Xia et al. (2009) measured oesophageal wall thickness in 

contracted as well as dilated state through 110 consecutive CT images of adult patients 

without oesophageal diseases. Kahrilas et al. (1995)   located a high pressure zone in the 

lower part of the oesophagus. The overall conclusion that Pandey et al. (2017) drew by 

analyzing the data made available by them was that, in the dilated state, the upper 

oesophagus is thicker while, in the contracted state, the lower oesophagus is thicker. Pandey 

et al. (2017) also concluded that the change in the thickness in the lower oesophageal wall 

is more than that in the upper part. Since the peristaltic waves are created by the contraction 

of circular muscles of oesophagus, a larger thickness of wall is an indication of larger 

degree of contraction. Hence they modeled the wall equation with increasing wave 

amplitude. Pandey and Tiwari (2017) studied swallowing of Casson fluid in oesophagus 

under the influence of peristaltic waves of varying amplitude. The conclusions were in 

conformity with experimental findings. Motivated by those studies, we attempt to 

investigate peristaltic transport of Herschel-Bulkley fluid in an oesophagus when the wave 

amplitude dilates while propagating along the wall. This is because several edible materials 

physically resemble Herschel-Bulkley properties (Fig.3.1). Vajravelu et al. (2005) analyzed 

peristaltic flow of Herschel–Bulkley fluid in an inclined tube. Akbar and Butt (2015) also 

investigated peristaltic motion in a non-uniform channel filled with Herschel-Bulkley fluid. 

But their investigations are not meant for oesophageal swallowing particularly under the 

circumstances we intend to investigate.  

3.2 Mathematical Formulation  

We consider oesophagus as a circular cylindrical tube undergoing peristaltic contraction 

and relaxation proposed by Pandey et al. (2017) gets modified for the single wave 

propagation may be given by 

𝐻′(𝑥′, 𝑡′, 𝑘′) = {
𝑎 − ∅′𝑒𝑘

′𝑥′𝑐𝑜𝑠2
𝜋

𝜆
(𝑥′ − 𝑐𝑡′),     during [𝑡′,   𝑡′ +

𝜆

𝑐
 ]

𝑎 − ∅′𝑒𝑘
′𝑥′ ,                                     otherwise               

      (3.1) 

where 𝐻′, 𝑥′ , 𝑡′, 𝑎 , ∅′, 𝜆, 𝑘′ and 𝑐 respectively denote radial displacement of the wall 

from the centre line, axial coordinate, time parameter, radius of the tube, amplitude of the 
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wave supposed to propagate along the wall to create a motion as desired, wavelength, 

dilation parameter and wave velocity. The geometry is given in Fig. 3.2.       

                                  

 

                 

Fig. 3.2 Geometry of the flow under peristaltic waves of progressively dilating amplitude. 

The continuous solid wave indicates position of single bolus; similar boluses lagging 

behind or leading simply symbolize that the previous position and the future position of the 

bolus.  

 

The governing equations for the axi-symmetric flow of an incompressible fluid with 

no body force are given by   

𝜌 (
𝜕

𝜕𝑡′
+ 𝑢′

𝜕

𝜕𝑥′
 + 𝑣′  

𝜕

𝜕𝑟′
) 𝑢′ = −

𝜕𝑝′

𝜕𝑥′
+

1

𝑟′

𝜕(𝑟′𝜏′
𝑟′𝑥′

)

𝜕𝑟′
+ 

𝜕𝜏′
𝑥′𝑥′

𝜕𝑥′
 ,       (3.2) 

𝜌 (
𝜕

𝜕𝑡′
+ 𝑢′

𝜕

𝜕𝑥′
 + 𝑣′  

𝜕

𝜕𝑟′
) 𝑣′ = −

𝜕𝑝′

𝜕𝑟′
+

1

𝑟′

𝜕(𝑟′𝜏′
𝑟′𝑟′

)

𝜕𝑟′
+ 

𝜕𝜏′
𝑥′𝑟′

𝜕𝑥′
− 

𝜏′
𝜃′𝜃′

𝑟′
 .       (3.3) 

The equation of continuity is   

 
𝜕𝑢′

𝜕𝑥′
 +

1

𝑟′
 
𝜕(𝑟′𝑣′)

𝜕𝑟′
= 0,                   (3.4) 

where 𝜏′𝑖𝑗  (𝑖 , 𝑗 = 𝑟
′, 𝑥′, 𝜃′), 𝜌, 𝑢′, 𝑝′, 𝑣′ and 𝑟′ are the shear stress tensor components, fluid 

density, axial velocity, pressure, radial velocity, and radial coordinate respectively.       

The Herschel -Bulkley fluid model, geometrically presented in Fig. 3.1, is defined 

as    

𝜏′𝑟′𝑥′  =  𝜇
′ |
𝜕𝑢′

𝜕𝑟′
|
𝑛−1

𝜕𝑢′

𝜕𝑟′
+ 𝜏′0 ,             𝜏

′
𝑟′𝑥′  >  𝜏

′
0  

𝜕𝑢′

𝜕𝑟′
= 0,                                                       𝜏′𝑟′𝑥′ ≤ 𝜏′0

} .                    (3.5) 

Contracted wall Stationary wall

Wall position Relaxed wall
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where 𝜇′, 𝑛 and 𝜏′0 are the flow consistency index (not to be confused with viscosity 

because the effective viscosity is 𝜇′ |
𝜕𝑢′

𝜕𝑟′
|
𝑛−1

), flow behaviour index and yield stress 

respectively.  We plan to apply long wavelength approximation, stress components other 

than defined in Eq. (3.5) will get eliminated, for that reason, the rest are not defined here.      

The various parameters are non-dimensionalised for dimensional similarity as 

follows: 

𝑥 =  
𝑥′

𝜆
 ,      𝑟 =  

𝑟′

𝑎
 ,     𝑡 =  

𝑐𝑡′

𝜆
 ,    𝑢 =  

𝑢′

𝑐
 ,    𝑣 =  

𝑣′

𝑐𝛼 
 ,     𝛼 =  

𝑎

𝜆 
 ,

   𝐻 =
𝐻′

𝑎
 , 𝑘 = 𝑘′𝜆, 𝜏0 = 

𝜏′0

𝜇′ 
(
𝑎

𝑐
)
𝑛

, 𝜏𝑖𝑗 = 
𝜏′
𝑖′𝑗′

𝜇′
(
𝑎

𝑐
)
𝑛

   (𝑖, 𝑗 = 𝑟, 𝑥, 𝜃),

   𝑙 =
𝑙′

𝜆
 ,     𝜙 =

 ∅′

𝑎
 ,      𝑝 =

𝑝′ 𝑎2

𝜇′𝑐𝜆
 ,      𝑄 =  

𝑄′

𝜋𝑎2𝑐
 ,       𝑅𝑒 =

𝜌𝑎𝑛𝛼

𝜇′𝑐𝑛−2
  . }
 
 

 
 

                (3.6) 

where  𝛼  is a parameter that gives the ratio of the radius of the tube and wavelength, while 

𝑙 , 𝑄 and  𝑅𝑒 are respectively length of the tube, volume flow rate and Reynolds number. 

      Introducing the above mentioned dimensionless parameters in Eqs. (3.1)-(3.5) followed 

by the application of the long wavelength approximation, Eqs. (3.1)-(3.5) under low 

Reynolds number approximation reduce respectively to the following dimensionless form 

𝐻(𝑥, 𝑡, 𝑘) = {
1 − ∅𝑒𝑘𝑥𝑐𝑜𝑠2𝜋(𝑥 − 𝑡),     during [𝑡, 𝑡 + 1 ]

1 − ∅𝑒𝑘𝑥,                              otherwise           
.             (3.7)  

𝜕𝑝

𝜕𝑥
=

1

𝑟

𝜕(𝑟𝜏𝑟𝑥)

𝜕𝑟
               (3.8) 

𝜕𝑝

𝜕𝑟
= 0               (3.9) 

𝜕𝑢

𝜕𝑥
+
1

𝑟

𝜕(𝑟𝑣)

𝜕𝑟
= 0            (3.10) 

𝜏𝑟𝑥  =  |
𝜕𝑢

𝜕𝑟
|
𝑛−1 𝜕𝑢

𝜕𝑟
+ 𝜏0 ,            𝜏𝑟𝑥  >  𝜏0

𝜕𝑢

𝜕𝑟
= 0,                                           𝜏𝑟𝑥 ≤ 𝜏0

}                    (3.11)  

        The following boundary conditions, given in dimensionless form (dimensional 

counterparts being similar) are imposed on the governing equations: 

no slip condition on inner surface of the oesophagus, i.e  𝑢(𝑟, 𝑥, 𝑡)|𝑟=𝐻 = 0,   (3.12) 

radial velocity at the wall of the oesophagus, i.e  𝑣(𝑟, 𝑥, 𝑡)|𝑟=𝐻 =
𝜕𝐻

𝜕𝑡
,    (3.13) 

absence of any radial velocity in the plug flow region, i.e  𝑣(𝑟, 𝑥, 𝑡)|𝑟=𝐻𝑝𝑙 = 0,               (3.14)   

regularity condition, i.e  
𝜕𝑢

𝜕𝑟
|
𝑟=𝐻𝑝𝑙

= 0  ,                    (3.15) 
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where 𝐻𝑝𝑙 is the radius of the plug flow region defined by  

𝐻𝑝𝑙 = 
2𝜏0
𝜕𝑝

𝜕𝑥

 . 

    

           (3.16) 

3.3 Solution 

Integrating Eq. (3.8), with Eq. (3.9) taken into consideration, with respect to 𝑟, we get   

  𝜏𝑟𝑥 =
𝑟

2

𝜕𝑝

𝜕𝑥
+
𝐴(𝑥,𝑡)

2
 ,                           (3.17) 

where 𝐴(𝑥, 𝑡) is an arbitrary function of  𝑥 and 𝑡 .  

Now, using Eq. (3.11) in Eq. (3.17) and then applying condition (3.15), we obtain   

  
𝜕𝑢

𝜕𝑟
= (

𝑟

2

𝜕𝑝

𝜕𝑥
− 𝜏0)

1
𝑛
. 

Integrating it with respect to 𝑟 and applying the no-slip condition given by Eq. (3.12), the 

axial velocity may be, in view of Eq. (3.7), given by  

𝑢(𝑥, 𝑟, 𝑡) =
𝜕𝑝

𝜕𝑥
 |
𝜕𝑝

𝜕𝑥
|

1
𝑛
− 1

2
1
𝑛 (

1

𝑛
+1)

 [{𝑟 − 𝐻𝑝𝑙}
1

𝑛
+1
− {𝐻 − 𝐻𝑝𝑙 }

1

𝑛
+1
] .              (3.18) 

The plug flow velocity is obtained by putting 𝑟 =  𝐻𝑝𝑙  in Eq. (3.18) and is given by 

𝑢𝑝𝑙(𝑥, 𝑡) = −
𝜕𝑝

𝜕𝑥
  |
𝜕𝑝

𝜕𝑥
|

1
𝑛
− 1

2
1
𝑛 (

1

𝑛
+1)

 {𝐻 − 𝐻𝑝𝑙 }
1

𝑛
+1

.                 (3.19) 

Solving the continuity Eq. (3.10) together with Eq. (3.14) and then dividing resulting 

equation by 𝑟, we obtain the radial velocity 

  𝑣(𝑥, 𝑟, 𝑡) =
|
𝜕𝑝

𝜕𝑥
|

1
𝑛
− 1𝜕𝐻

𝜕𝑥
 
𝜕𝑝

𝜕𝑥
{𝐻−𝐻𝑝𝑙 }

1
𝑛 𝑟

2
(
1
𝑛 
+1)

+
1

𝑛
 |
𝜕𝑝

𝜕𝑥
|

1
𝑛
− 2𝜕𝑝

𝜕𝑥
 
𝜕2𝑝

𝜕𝑥2
 {𝐻−𝐻𝑝𝑙 }

1
𝑛
+1
 𝑟

(
1

𝑛
+1)2

(
1
𝑛 
+1)

−
1

𝑛
 |
𝜕𝑝

𝜕𝑥
|

1
𝑛
− 2𝜕𝑝

𝜕𝑥
 
𝜕2𝑝

𝜕𝑥2
 {𝑟−𝐻𝑝𝑙 }

1
𝑛
+2
 

(
1

𝑛
+1)(

1

𝑛
+2)2

1
𝑛 

  

    +
1

𝑛
 |
𝜕𝑝

𝜕𝑥
|

1
𝑛
− 2𝜕𝑝

𝜕𝑥
  
𝜕2𝑝

𝜕𝑥2
  {𝐻−𝐻𝑝𝑙 }

1
𝑛
+3

(
1

𝑛
+1)(

1

𝑛
+2)(

1

𝑛
+3)2

1
𝑛  𝑟

−
1

𝑛
 |
𝜕𝑝

𝜕𝑥
|

1
𝑛
− 2𝜕𝑝

𝜕𝑥

𝜕2𝑝

𝜕𝑥2
{𝐻−𝐻𝑝𝑙}

1
𝑛
+1
𝐻𝑝𝑙
2

(
1

𝑛
+1) 2

(
1
𝑛 
+1)

 𝑟

 −
|
𝜕𝑝

𝜕𝑥
|

1
𝑛
− 1𝜕𝐻

𝜕𝑥
 
𝜕𝑝

𝜕𝑥
{𝐻−𝐻𝑝𝑙 }

1
𝑛 𝐻𝑝𝑙

2

  2
(
1
𝑛 
+1)

 𝑟

 .       (3.20) 

Now applying the boundary condition (3.13) in Eq. (3.20) and simplifying, we get  

𝐻
𝜕𝐻

𝜕𝑡
=

1

𝑛

𝜕𝑝

𝜕𝑥
|
𝜕𝑝

𝜕𝑥
|
1
𝑛 − 2 𝜕2𝑝

𝜕𝑥2

(𝐻−𝐻𝑝𝑙)
(2+

1
𝑛)

(1+
1

𝑛
)2

1
𝑛 

{
(𝐻+𝐻𝑝𝑙)

2
+

1

2+
1

𝑛

(
𝐻−𝐻𝑝𝑙

3+
1

𝑛

−𝐻)} +
𝜕𝑝

𝜕𝑥
 |
𝜕𝑝

𝜕𝑥
|
1
𝑛− 1 𝜕𝐻

𝜕𝑥

(𝐻−𝐻𝑝𝑙)
(1`+

1
𝑛)(𝐻+𝐻𝑝𝑙) 

(
1

𝑛
+1)2

(
1
𝑛 +1)

.          

                                          (3.21) 

From Eq. (3.21), the pressure gradient is derived as  
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|
𝜕𝑝

𝜕𝑥
|
1
𝑛
 − 1 𝜕𝑝

𝜕𝑥
= 

𝑔(𝑡)+∫ 𝐻(𝑠,𝑡,𝑘)
𝜕𝐻(𝑠,𝑡,𝑘)

𝜕𝑡
𝑑𝑠

𝑥
0

(𝐻−𝐻𝑝𝑙)
(2+

1
𝑛
)

(1+
1
𝑛
)2
1
𝑛 

{
(𝐻+𝐻𝑝𝑙)

2
+ 

1

2+
1
𝑛

(
𝐻−𝐻𝑝𝑙

3+
1
𝑛

−𝐻)} 

   ,                    (3.22) 

where 𝑔(𝑡) is an arbitrary function of  𝑡.   

𝜕𝑝

𝜕𝑥
= 

𝑔(𝑡)+∫ 𝐻(𝑠,𝑡,𝑘)
𝜕𝐻(𝑠,𝑡,𝑘)

𝜕𝑡
𝑑𝑠

𝑥
0

(𝐻−𝐻𝑝𝑙)
(2+

1
𝑛
)

(1+
1
𝑛
)2
1
𝑛 

{
(𝐻+𝐻𝑝𝑙)

2
+ 

1

2+
1
𝑛

(
𝐻−𝐻𝑝𝑙

3+
1
𝑛

−𝐻)}

 
|

| 𝑔(𝑡)+∫ 𝐻(𝑠,𝑡,𝑘)
𝜕𝐻(𝑠,𝑡,𝑘)

𝜕𝑡
𝑑𝑠

𝑥
0

(𝐻−𝐻𝑝𝑙)
(2+

1
𝑛
)

(1+
1
𝑛
)2
1
𝑛 

{
(𝐻+𝐻𝑝𝑙)

2
+ 

1

2+
1
𝑛

(
𝐻−𝐻𝑝𝑙

3+
1
𝑛

−𝐻)}
|

|

𝑛−1

,      (3.23) 

The pressure at an arbitrary point along the length of the oesophagus is determined by 

integrating Eq. (3.23) from the inlet to the arbitrary axial point, it gives 

𝑝(𝑥, 𝑡) − 𝑝(0, 𝑡) =

∫

[
 
 
 
 
 

𝑔(𝑡)+∫ 𝐻(𝑠,𝑡,𝑘)
𝜕𝐻(𝑠,𝑡,𝑘)

𝜕𝑡
𝑑𝑠

𝑤
0

(𝐻−𝐻𝑝𝑙)
(2+

1
𝑛
)

(1+
1
𝑛
)2
1
𝑛 

{
(𝐻+𝐻𝑝𝑙)

2
+ 

1

2+
1
𝑛

(
𝐻−𝐻𝑝𝑙

3+
1
𝑛

−𝐻)}

 
|

| 𝑔(𝑡)+∫ 𝐻(𝑠,𝑡,𝑘)
𝜕𝐻(𝑠,𝑡,𝑘)

𝜕𝑡
𝑑𝑠

𝑤
0

(𝐻−𝐻𝑝𝑙)
(2+

1
𝑛
)

(1+
1
𝑛
)2
1
𝑛 

{
(𝐻+𝐻𝑝𝑙)

2
+ 

1

2+
1
𝑛

(
𝐻−𝐻𝑝𝑙

3+
1
𝑛

−𝐻)}
|

|

𝑛−1

]
 
 
 
 
 

𝑑𝑤
𝑥

0
,   (3.24)                              

 

so that the pressure difference between two ends of the oesophagus is  

𝑝(𝑙, 𝑡) − 𝑝(0, 𝑡) =

∫

[
 
 
 
 
 

𝑔(𝑡)+∫ 𝐻(𝑠,𝑡,𝑘)
𝜕𝐻(𝑠,𝑡,𝑘)

𝜕𝑡
𝑑𝑠

𝑤
0

(𝐻−𝐻𝑝𝑙)
(2+

1
𝑛
)

(1+
1
𝑛
)2
1
𝑛 

{
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𝑑𝑤
𝑙

0
.     (3.25) 

Now from Eq. (3.22), 𝑔(𝑡)  is obtained as  

𝑔(𝑡) =  

∫ |
𝜕𝑝
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1
𝑛
 − 1𝜕𝑝
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 𝑑𝑥
𝑙
0

.   (3.26)                                                                                                                    

For 𝐻𝑝𝑙 = 0 and 𝑛 = 1, Eqs. (3.23)–(3.26) reduce to corresponding equations for 

Newtonian fluids derived by Li and Brasseur (1993). This is to be noted that the expression 

for 𝐻(𝑥, 𝑡, 𝑘), given in Eq. (3.7), is more general than that used by Li and Brasseur (1993).  

 



                Chapter 3: Peristaltic transport of Herschel-Bulkley fluids………………  

38 
 

 

3.3.1 Time averaged volume flow rate 

The volume flow rate for single wave transport in the non-plug region is defined as 

  𝑄(𝑥, 𝑡) = 2𝛽 ∫ 𝑢𝑟𝑑𝑟
𝐻

𝐻𝑝𝑙
 ,      where     𝛽 = 𝑙

𝜆
 .  

Using Eq. (3.18) and then evaluating the integral, we have  

𝑄(𝑥, 𝑡) = −2𝛽
𝜕𝑝

𝜕𝑥
|
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|
1
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𝑛 

{
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2
+ 

1

2+
1

𝑛

(
𝐻−𝐻𝑝𝑙

3+
1

𝑛

− 𝐻)}.                 (3.27)       

Now we define the following transformations between the wave and the laboratory frames 

in the non-dimensional form  

𝑋 = 𝑥 − 𝑡,      𝑅 = 𝑟,        𝑈(𝑅, 𝑋) = 𝑢(𝑟, 𝑥, 𝑡) − 1,

𝑉(𝑅, 𝑋) = 𝑣(𝑟, 𝑥, 𝑡), 𝑞(𝑋) = 𝑄(𝑥, 𝑡) − 𝐻2 + 𝐻𝑝𝑙
2  ,
}                                                   (3.28) 

where the parameters on the left side are in the wave frame and those on the right side are 

in the laboratory frame. The volume flow rate averaged over a period in the laboratory 

frame for a single wave propagation, is   

�̅�(𝑥) = 1

𝛽
∫ 𝑄𝑑𝑡 
𝛽

0
,   

which, in view of Eq. (3.28), yields 

𝑄 =  �̅� + 𝐻2 − 1

𝛽
∫ 𝐻2𝑑𝑡 
𝛽

0
 ,                       (3.29) 

so that, on using Eq. (3.27), the pressure gradient along the axis may be given by     
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.         (3.30)    

Therefore, the pressure at an arbitrary point along the length of the oesophagus in terms of 

the time averaged volume flow rate is determined by integrating Eq. (3.30) from the inlet 

to the arbitrary axial point, and is given by 

𝑝(𝑥, 𝑡) − 𝑝(0, 𝑡) =
1

2𝑛𝛽𝑛
×  
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                                                                                          (3.31)  
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For 𝐻𝑝𝑙 = 0, Eq. (3.31) reduces to the corresponding equation for power-law fluids derived 

by Misra and Pandey (2001).                  

3.3.2 Local wall shear stress 

The local wall shear stress, defined at the wall, is  

  𝜏𝑤 (𝑥, 𝑡) =
𝜕𝑢

𝜕𝑟
|𝑟=𝐻  ,  

which, in view of Eq. (3.18), gives   

𝜏𝑤 =
𝜕𝑝
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 |
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|
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2
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1

𝑛 . 

Using Eq. (3.22), it reduces to 
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1
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1
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1
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(
𝐻−𝐻𝑝𝑙
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1
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−𝐻)}

 ,                (3.32) 

where 𝐻 is defined by Eq. (3.7) and 𝑔(𝑡) by Eq. (3.26). 

3.4 Results and discussions 

In order to investigate the effects of various parameters such as flow behavior index, 

amplitude dilation and the plug flow width on swallowing of Herschel-Bulkley fluid, we 

plot graphs for local pressure along the axis. The case considered here is free pumping 

which is obtained merely by setting zero pressure at the two ends of the oesophagus. When 

a non-Newtonian fluid swallows, only one bolus moves practically at a time in the 

oesophagus. Therefore, for the pictorial demonstration, we consider single bolus 

swallowing in the oesophagus although it can accommodate as many as three boluses at a 

time as per our consideration.  

The primary concern is the pressure distribution along the axis when a bolus travels 

down the oesophagus towards the cardiac sphincter. Since the mathematical model involves 

expressions that cannot be integrated by classical methods, the only way out is to go for 

numerical solution. Moreover, the values of all the dimensionless parameters are merely 

suitable assumptions to facilitate qualitative investigation.   

3.4.1 Effect of yield stress on flow dynamics  

When the fluid enters the oesophagus through its inlet, a bolus is created which moves with 

the wave. A bolus is considered to be confined within one peristaltic wavelength; and so it 
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appears at different positions at different instants. Since this is a qualitative investigation, 

no physiological data have been collected to validate the assumptions.  

The first prominent aspect required to be investigated is the effect of yield stress on 

the flow dynamics of peristaltic transport when the wave amplitude increases 

exponentially. We set ∅ = 0.7, 𝑘 = 0.01,   𝑛 = 1.1 and 𝐻𝑝𝑙 is varied in the range 0.0-0.08. 

The results are depicted in Fig. 3.3.  

At 𝑡 = 0.0 (Fig. 3.3(a)) it is observed that greater the yield stress, higher is the fall 

in pressure revealing a larger requirement of pressure. For the instants 𝑡 = 0.25 − 2.0  

(Figs. 3.3(b)-(f)), pressure gradient behind the bolus is positive which shows that the bolus 

does not move in the backward direction. It is observed that in all such cases, pressure 

required for swallowing is more for the higher yield stress. When the bolus progresses, it 

is observed that the requirement of pressure, adequate to carry the bolus forward, increases. 

This is revealed in Figs. 3.3(b)-(f). This is to be noted that when 𝑡 = 0.5, the pressure 

requirement is least but the pressure requirement is the maximum in the lower oesophagus. 

This is in confirmation with the finding of Kahrilas et al. (1995), who located the highest 

pressure in the lower oesophagus. We can thus conclude here that thicker the plug flow 

region, larger is the pressure required for flow, which further increases as the wave 

amplitude dilates with moving bolus.  
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(c)   t = 0.50      (d)   t = 0.75     

          

(e)    t = 1.0      (f)    t = 2.0 

Fig. 3.3(a-f) Pressure distribution along axial distance at different instants (𝑡 =
0.0, 0.25, 0.50, 0.75, 1.0, 2.0)  showing the effect of radius of the plug flow region 𝐻𝑝𝑙. 

Other parameters are taken as  ∅ = 0.7, 𝑛 = 1.1, 𝑘 = 0.01 .   

3.4.2 Effect of flow behaviour index 

Herschel-Bulkley fluid is a very general type of fluid which carries at a time properties of 

several types of fluids. For investigation, we assume three values 𝑛 = 0.9, 1, 1.1. The 

values of 𝑛, which can have much larger variations,  are randomly picked up.  Though very 

close, the three values represent three different types of fluids, viz., pseudo plastic, 

Newtonian and dilatants respectively if the yield stress is considered to be zero. These 

names are used only when there is no yield stress which causes a plug flow region in the 

middle of the flow. However, we can call them pseudo plastic and dilatant. For 𝑛 = 1 with 

yield stress, the fluid is known as Bingham fluid. The dilation parameter is fixed as 𝑘 =

0.01 and the plug flow region is set as 𝐻𝑝𝑙 = 0.01 for investigating the impact of flow 

behavior index 𝑛.   
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The pressure curves corresponding to 𝑡 = 0.0 given in Fig. 3.4(a) reveal that the 

pressure falls sharp at its tail to facilitate the bolus to travel down the oesophagus. This is 

possible only when the local pressure gradient is negative. But beyond the head of the wave, 

pressure increases to prevent any retrograde flow. It is observed that the depression of 

pressure increases with the increasing flow behaviour index, indicating thereby that the 

pressure required to drag the fluid is more for 𝑛 > 1 and less for 𝑛 < 1 (less than that for 

Bingham fluid (𝑛 = 1)). But at 𝑡 = 0.25 (Fig. 3.4(b)), pressure increases as we move along 

the length of the oesophagus from the upper sphincter. As soon as it reaches the tail of the 

wave, it starts falling, reaches the minimum at the head of the wave, and then rises linearly 

to maintain a pressure balance at the two ends. At 𝑡 = 0.50, pressure rises again at the tail 

of the bolus as it travels some more distance along the oesophagus which is shown in Fig. 

3.4(c). Now pressure dips in the similar manner to maintain its motion towards the lower 

oesophageal sphincter, and then rises to zero at the lower oesophageal sphincter. Pressure 

distribution along the axis of the bolus and within it, is almost the same as the previous 

case. A similar trend is observed at 𝑡 = 0.75 (Fig. 3.4(d)) as well as at  𝑡 = 1.0 (Fig. 3.4(e)) 

except that the magnitude of the two peaks which differ according to the position of the 

wave. At 𝑡 = 1.0, completes one cycle. Plot for 𝑡 = 2.0 given in Fig. 3.4(f) reveals that the 

lower oesophageal sphincter is  about to deliver the food  bolus to stomach where the 

pressure distribution is completely reversed  as compared to that at the upper oesophageal 

sphincter. Throughout the journey of bolus, pressure distribution remains similar for 

dilatant, Newtonian and pseudo plastic motion of the fluid apart from the fact that a plug 

flow region has been maintained. Quantitatively, differences of the pressures corresponding 

to the three cases are quite large. Dilatant fluid requires larger pressure than partly 

Newtonian nature (which is Bingham fluid here) while the pseudo plastic nature requires 

lesser pressure.  

Achalasia causes inadequate lower oesophageal sphincter relaxation. As a 

consequence of inadequate lower oesophageal sphincter relaxation oesophageal clearance 

is delayed. Therefore, a possible treatment for patients with inadequate lower oesophageal 

sphincter relaxation may be that this is overcome through drugs or operation (Spechler and 

Castell, 2001). Our investigation reveals that swallowing of pseudo plastic fluid requires 

lesser pressure in compression to that of Bingham fluid or dilatant fluid. Hence, an outcome 

of the present analysis favours feeding of pseudo plastic fluids for patients suffering from 

achalasia. 



                Chapter 3: Peristaltic transport of Herschel-Bulkley fluids………………  

43 
 

 

             

(a)   t = 0.0      (b)   t = 0.25  

             

(c)   t = 0.50      (d)   t = 0.75     

              

 (e)    t = 1.0      (f)    t = 2.0 

Fig. 3.4(a-f) Pressure distribution along axial distance at different instants (𝑡 =
0.0, 0.25, 0.50, 0.75, 1.0, 2.0)  showing the effect of flow behavior index n. Other 

parameters are taken as ∅ = 0.7, 𝑘 = 0.01,   𝐻𝑝𝑙 = 0.01.   
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3.4.3 Effect of dilating wave amplitude 

The effect of dilating wave amplitude on the flow dynamics is depicted in Fig. 3.5. The 

comparison of plot at 𝑡 = 1.0 to 𝑡 = 2.0 (Fig. 3.5) show that unlike the case of peristaltic 

wave with constant amplitude (Figs. 3.5(a)-(f)), corresponding to 𝑘 = 0.0), the difference 

between the maximum and the minimum pressures becomes larger when wave-amplitude 

dilates (Figs. 3.5(a)-(f), corresponding to 𝑘 = 0.02 and 𝑘 = 0.03), i.e., pressure 

distribution for dilating amplitude is observed to differ from that for constant amplitude. 

An observation of Figs. 3.5(a) and 3.5(f) reveals that pressure gradients, corresponding to 

𝑘 = 0.02 and 𝑘 = 0.03, are greater in magnitude in the lower oesophageal part than that in 

the upper oesophageal part and also, the pressure rises most in the lower part of the 

oesophagus. It conforms the experimental observations (Kahrilas et al., 1995) of high 

pressure zone in the lower oesophageal part. 
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      (e)    t = 1.0      (f)    t = 2.0 

Fig. 3.5(a-f) Pressure distribution along axial distance at different instants (𝑡 =
0.0, 0.25, 0.50, 0.75, 1.0, 2.0) showing the effect of dilation parameter 𝑘. Other parameters 

are taken as  ∅ = 0.7, 𝐻𝑝𝑙 = 0.01,   𝑛 = 1.1 .   

3.5 Conclusion and physical interpretation 

The aim of this investigation is to learn the effect of dilating wave amplitude on the non-

Newtonian nature of the fluid flowing in the oesophagus. The non-Newtonian nature is  

here characterized by the presence of a plug flow region arising out of yield stress and 

variation of flow behavior index making it pseudo plastic or dilatant depending on whether 

the flow behavior index is less than or greater than one. All these characteristics give it the 

name Herschel-Bulkley fluid. The presence of a plug flow region requires more pressure 

to be exerted by the oesophageal wall on the fluid swallowing inside it. Dragging by the 

dilating wave amplitude increases it further. This conforms the experimental observations 

(Kahrilas et al., 1995) of high pressure zone in the lower oesophageal part. 

When the fluid is pseudo plastic (i.e. 𝑛 < 1) pressure required for swallowing is 

less than that for Newtonian fluids. Dilatant fluid (i.e. 𝑛 > 1) requires much more pressure 

than pseudo plastic and Newtonian as well, for swallowing. All the characteristics put 

together makes the assessment very much complicated.  

 It is also observed that the magnitude of pressure along the oesophagus increases 

with increasing flow behaviour index which reveals that swallowing of pseudo plastic fluid 

is easier than that of dilatant fluid. It is also observed that for exponentially increasing 

wave-amplitude, pressure keeps increasing along the entire length of the oesophagus; and 

finally towards the end of the oesophageal flow, it is at the peak. It is observed that the 

pressure distribution is dependent on the position of the wave in the oesophagus. The spatial 

rate of change in the pressure difference is found to be much greater when the wave 

originates at the inlet and terminates at the outlet of the oesophagus than when the wave 
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travels in the middle (Figs. 3.3-3.5). This may be attributed to the fact that the pumping 

action does not take place along the entire length of the oesophagus uniformly. The rate of 

change is more in the vicinity of the inlet and the outlet. It is further concluded that the 

pressure difference at a given axial position is more for a dilatant fluid than that for a pseudo 

plastic fluid. The pressure-difference corresponding to a Bingham fluid falls in between 

these two values.  

This is also concluded on the basis of the present analysis that feeding of pseudo 

plastic fluids are preferable to the patients suffering from achalasia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


