
CHAPTER-4 

The Prediction of Buckling Load of Laminated Composite Hat-Stiffened 

Panels under edge Compression Load by using Neural Networks  

4.1 Introduction  

ANNs are parallel computing systems similar to biological neural networks. 

Artificial Neural Networks (ANNs) consist of large number of processing elements with 

their interconnections. Artificial neural networks (ANN) modeling is a nonlinear statistical 

technique. It can be applied to solve complex problems that are not amenable to 

conventional statistical and mathematical methods. In the past few years there has been 

constantly increasing interest in neural networks modeling in different fields of civil 

engineering. Usually neural networks are trained so that a particular set of inputs produces, 

as nearly as possible, a specific set of target outputs. Usually neural networks are trained 

with a particular set of inputs produces and nearly as possible as a specific target output. 

The most commonly used ANN is the three-layer feed-forward back propagation 

ANN. In feed-forward backpropagation neural networks architecture, there are layers and 

nodes at each layer. Each node at input and inner layers receives input values, processes 

and passes it to the next layer; this process is conducted by weights. Weight is the 

connection strength between two nodes. The numbers of neurons in the input layer and the 

output layer are determined by the numbers of input and output parameters respectively. 

Commonly, neural network modeling follows these steps; database collection, analysis, 

preprocessing of the data and training of the neural network. In a neural network model, the 

outputs are correlated to the inputs through the neurons with weights and bias. The 

behavior of a neural network is defined by the way its individual computing elements are 
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connected and by the strength of those connections or weights. The weights are 

automatically adjusted by training the network according to a specific learning rule until it 

performs with the desired error rate. 

Kadi [90] presented a review on pattern estimation of the mechanical behaviour of 

fiber-reinforced combined materials with the help of ANN tool. Mallela and Upadhyay [91] 

used a computational tool (ANN) for predicting the buckling load of panel subjected to in-

plane shear loading. The results of ANN were compared with FEM results of stiffened 

panels. Rogers [92] developed a guideline for designing and training an ANN to simulate 

the structural analysis program. Alqedra and Ashour [93] performed ANN to study the 

significant parameters on the concrete shear capacity of anchor bolts. Few researchers have 

used ANNs for predictions of the behaviour of laminated composite materials 

[94]. Multilayer feedforward networks are universally accepted and gives result in the 

desired accuracy with a specific sense [97-98]. Results from one hidden layer were given 

desired output with different weight value connection for continuous function but the 

selection of the second layer for the discontinuous function [99]. The hidden layer should 

contain a total number of neurons was equal to the one greater than twice the number of 

input parameters  and some cases the hidden layer selection based quality and quantity of 

the training data [100]. Some situation the multi-hidden layer was given better result over 

the single hidden layer [101-102]. Chakraborty [103] developed an optimum network with 

application of computational tool (ANN) for predicting of the presence of a delamination of 

laminated composite panel at different location along with its shape and size from FE 

analysis generated input data (natural frequencies). 
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This chapter deals with the optimization of laminated composite hat-stiffened panels 

under in-plane compressive loading by using ANNs. The ANNs have been trained by using 

a generated database of FE models. Finite element (FE) models have been used to generate 

data set of four different parameters. The four parameters are extensional stiffness ratio of 

skin in the longitudinal direction to the transverse direction, orthotropy ratio of the panel, 

the ratio of twisting stiffness to transverse flexural stiffness and smeared extensional 

stiffness ratio of stiffeners to that of the plate. For training of ANN, multilayer feedforward 

back-propagation is used as a network function with two-hidden layers in the neural 

network. The good network architecture is obtained after several iterations to predict the 

buckling load of the laminated composite hat-stiffened panel. Artificial neural network 

(ANN) are used to analyze the laminated composite hat-stiffened panels and compare with 

finite element analysis (FEA) results. Optimum neural network architecture has been 

established and tested with unknown data set. 

4.2 FE Modeling of the Laminated Composite Panels 

Numerical studies have been carried out by analyzing hat-stiffened panel of 

dimension 762 mm x 762 mm as shown in Figure 4.1. FE analysis has been performed for 

the hat-stiffened panel under compressive loading by using ABAQUS software. The 

laminated composite hat-stiffened panel has been modeled carefully to define the material 

properties of skin and stiffeners, number of layers, thickness and fiber orientations of skin. 

Shell element (S4R) has been taken for FE analysis of panel in ABAQUS [124], which 

possesses both bending and membrane capabilities. The hat-stiffened panel has been 

discretized with shell element (S4R) and 820 elements is generated of the panel as shown in 

Figure 4.2. Uniformly distributed edge compression load of 1 kN/m has been applied to the 
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panel in stiffeners direction. The model has been submitted for the eigenvalue buckling 

analysis with application of simply supported boundary conditions on the panel. The 

buckling load has been obtained by multiplying the edge compression load and the 

eigenvalue as obtained from the FE analysis. 

 

Figure 4.1 Structural geometry of the panel with 8 number of hat-stiffener.  
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Figure 4.2 The stiffened panel discretized with shell element. 

 

4.2.1 Numerical Studies of the Hat-Stiffened Panel 

Numerical studies have been carried out by analyzing the hat-stiffened panel of 

dimension 762 mm x 762 mm with variation of  pitch length (84.67 mm to 381 mm)  and 

depth (25 mm to 55 mm) of the stiffener with a fixed top width of 25 mm. The carbon fiber 

composite (CFC) material property of each ply of thickness 0.125 mm is illustrated in 

Table 3.2. Three types of plies configuration of skin are used for plate element and stiffener 

component of the panel, which is illustrated in Table 3.3.  

A program was developed on the basis of smeared stiffness approach by using 

equation (3.18) to (3.22) in previous chapter 3 for different pre decided orthotropy ratio. 

The depth of hat-stiffener is obtained by trial and error with variation of pitch length of 
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stiffeners for three different skin considered separately, which has been used for FE 

modeling of the panel. The buckling analysis has been performed on the stiffened panel 

subjected to uniformly distributed edge compressive load with simply supported boundary 

condition on all edges. Input parameters of ANN are calculated from equation (3.18) to 

(3.22) which is given in previous chapter 3. 

 
(a) 60

0
-hat-stiffener with pitch length = 190.5 mm 

 

 
(b) 75

0
-hat-stiffener with pitch length = 127 mm 

Figure 4.3 Global buckled mode shapes of panel for (a) skin-1 with D1/D2 = 200, (b) skin-3 

with D1/D2 = 100. 
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Parameters have been identified by generated data, which influence the buckling load 

of the stiffened panel. The parameters A11/A22 are extensional stiffness ratio of skin in the 

longitudinal direction to the transverse direction, D1/D2 gives the global flexural properties 

of the stiffened panel, D3/D2 gives the idea of the torsional rigidity of the panel and 

(EA)S/(EA)P gives the knowledge about the material strength of stiffener to that plate. For 

given skin of the panel, the ratios D1/D2 and (EA)S/(EA)P of the stiffened panel increase 

only by increasing pitch length and depth of stiffener. Local buckling of the panel is 

increased with increasing the depth of stiffener. Figure 4.3(a)-(b) shows the global buckling 

mode of the 60
0
-hat-stiffened panel and 75

0
-hat-stiffened panel under compressive loading 

for different pitch length and D1/D2.  

4.3 Methodology for Prediction of Buckling Load by ANN 

  The neural network is a computational technique, which was inspired by the working 

pattern of human biological brains [95-96]. The neural network is a combination of input 

layer, hidden layer and output layer. The further hidden layer can be more than one layer, 

which is problem specific. All three-layer are connected with different nodes and nodes 

connection with specific weight and a bias value. There are different types of network 

available for prediction, but the problem will define which network is more suitable for best 

output. Multilayer feedforward networks were worked as a universal accepted and gave 

result in the desired accuracy with a specific sense [97-98]. For prediction of Civil 

engineering problems most widely used network is feed-forward backpropagation. Present 

work is divided into four steps as follows: 

o Selection of training and testing data from the main datasheet 

o Deciding the network type and another required parameter  
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o Training the network and simulation 

o Evaluation of the performance of ANN 

4.3.1 Selection of Training and Testing Data from the Main Data-Sheet 

192 number of FE model of simulated data-set has been divided into two parts as 

training data set and test data set. The data have been divided as the combination of 80 % 

data for training purpose and 20 % data for testing purpose. Four different input variables 

A11/A22, D1/D2, D3/D2 and (EA)S/(EA)P have been taken, which influence the buckling 

problem of the hat-stiffened panel under compressive loading and buckling load per unit 

area taken as output for preparation of networks. The parameter A11/A22 is varied 0.59 (for 

skin-3) and 1.68 (for skin-1) as shown in Table 3.3. D1/D2 is taken in range 100-500 with a 

variation of depth of hat-stiffener for pitch length of 84.67 to 381 mm. D3/D2 is varied in 

the range of 7.4 - 68.1 for variation of the shaped of hat-stiffener. The parameter (EA)S 

/(EA)P is varied 0.14 to 1.01 with a variation of depth of stiffener for different skin.  

4.3.2 Deciding the Network Type and other Required Parameters 

Development of perfect network with a proper combination of the input layer, hidden 

layer and the output layer is necessary for good prediction of results. The input node is the 

combination of four different parameters A11/A22, D1/D2, D3/D2 and (EA)S /(EA)P to obtain 

the desired output. Once after deciding input and output parameter, the next step is to find 

the architecture of hidden layers. For finding the best suitable hidden layer, different types 

of combination of layers have been taken as shown in Table 4.1. Results from one hidden 

layer were given desired output with different weight value connection for continuous 

function but the selection of the second layer for the discontinuous function [99]. The 

hidden layer can be one or more than one, but there is no fix theory for selection of hidden 
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layers. Some cases the hidden layer selection was based on quality and quantity of the 

training data [100]. Some situation the multi hidden layer was given better result over the 

single hidden layer [101-102]. The hidden layer should contain a total number of neurons 

was equal to the one greater than twice the number of input parameters [100]. It is not easy 

to select any fixed pattern for a selection of hidden layer; normally it is based on the trial 

and error method. Table 4.1 shows a reflection of the different type of hidden layer 

combination and plot R square after testing and validation with the help of observed and 

actual data. Network performance has been considered on the basis of a mean square error 

at the time of training and testing, where mean square error is found 0.0140 and 0.8091 at 

the time of training and testing  respectively for the best network. Finally, a neural network 

architecture 4-7-2-1 has been obtained as shown in Figure 4.4, which gives the desired 

output for prediction of buckling load per unit area of the hat-stiffened panel. 

 
Figure 4.4 Architecture diagram of a 4-7-2-1 multi-layer feedforward back-propagation 

neural network. 



70 
 

Table 4.1 Comparative study of R-square for different number of hidden nodes and hidden 

layers. 

Input nodes Hidden Nodes Output nodes R
2
 

1
st
  Layer 2

nd
  Layer 

4 5 0 1 0.8896 

4 13 0 1 0.9167 

4 15 0 1 0.9181 

4 9 0 1 0.9334 

4 7 3 1 0.9451 

4 8 4 1 0.9574 

4 5 4 1 0.9590 

4 6 3 1 0.9692 

4 11 0 1 0.9848 

4 6 0 1 0.9848 

4 4 3 1 0.9850 

4 10 0 1 0.9871 

4 8 0 1 0.9883 

4 7 4 1 0.9896 

4 8 2 1 0.9898 

4 7 0 1 0.9905 

4 8 3 1 0.9952 

4 7 2 1 0.9983 

 

4.3.3 Training the Network and Simulation 

It is observed that ANN is the best tool for predicting the buckling load per unit area based 

on the good training and testing data. A neural network architecture 4-7-2-1 has been 

selected which is best suitable for this problem. Figure 4.5 shows the process of multilayer 

feedforward back-propagation as a network function in this work. There have some 

working steps of this network as follows: 

o Feed forward in training pattern. 
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o Comparison and calculation of error. 

o If the result is good, then draw output otherwise back propagation starts and adjust 

weights. 

o Back-propagation work in a loop till desire output not receive. 

 
Figure 4.5 The process of feed forward back-propagation in the neural network. 

 

There is a very high range of training function available in Matlab where TrainLM has 

been used for training function which function is given better results. Also, LearnGDM has 

been used for adaptive learning function. Two hidden layers have been used for the 

network creation. The tan-sigmoid transfer function has been used for the hidden layer, 

where the range of tan-sigmoid is -1 to 1. The pure linear transfer function has been used 

for the plot the output result, and this combination is given a better result.  

R-squared is a statistical measurement of data, which checks the data closeness to the 

best-fitted regression line. R-squared is also known as the coefficient of determination. R-

squared value varies from 0 to 100 present, where ‘0’ present shows worst fitted to 

regression line and 100 present shows best fit to the regression line.  

The suitable network has been found after many iterations of training of the network for 

the satisfactory prediction of buckling load. R-squared value has been estimated for every 
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network and find out the best network for the prediction of buckling load per area of the 

panel. Also, a continuously checking of the performance based on mean square error has 

been calculated for training and testing. Continuously training and testing work have been 

processed until the best-trained network is not found. After the selection of best network, 

the next step is to note the weight value and bais value of that network for future prediction. 

4.3.4 Evaluation of the Performance of ANN 

The performance of the neural network has been verified by using new data set and the 

result of new data set is reflected the accuracy of trained network. The best prediction of 

results has been obtained for the new data from selected neural network model. Finally, 

error between the actual data and predicted output data has been found which shows good 

performance of the neural network. 

4.4. Results and Discussion 

In this chapter, multilayer feedforward back-propagation process has been used as a 

network function with neural network architecture 4-7-2-1 as shown in Figure 4.4. The 

neural network has been trained to get the suitable value of the buckling load per unit area 

of the panel. Weight value matrix (W1), which is connected to four input nodes to seven 1
st
 

hidden layer nodes:  

W1 = 

[
 
 
 
 
 
 
−0.3055 0.8393 −0.2013 
0.4546  −0.1903 −0.6738 
0.2031 −2.1879 2.2828

−2.9280
0.3047
0.6275

−1.7214 −0.6199 −0.5154
−1.4015 −0.5750 −0.0214
0.5592

−2.2713
−0.5159
−1.3913

1.9310
0.0685

0.3579
0.5097
0.2174
0.7581 ]
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Weight value matrix (W2), which is connected to seven 1
st
 hidden layer nodes to two 2

nd
 

hidden layer nodes: 

W2 = [
1.2617 0.1387 −1.8535 0.2512 −1.0811 −1.0851 0.3747
−0.3869 0.3925 0.1843 0.3254 −0.4691 −0.6722 0.1032

] 

Weight value matrix (W3), which is connected to two nodes of 2
nd

 hidden layers to one 

node of output layer: 

W3 = [−1.2679 −2.0134] 

Bias for different hidden layers are given below: 

For first hidden layer: (b1) = 

[
 
 
 
 
 
 
−2.6436
−0.5004
−0.1125
0.1256

−0.4688
2.0969

 −1.9752]
 
 
 
 
 
 

 

For second hidden layer: (b2) = [
−1.3818
0.74469

]  

For output layer: (b3) = [-0.6399] 

Figure 4.6 shows the linear regression graph between the target of FEM result and ANN 

prediction. The regression line is obtained Y = Slope *X + Intercept, where the slope is 

1.0052 and intercept is -0.1978. The standard error of slope and intercept are 0.00881and 

0.52658 respectively. R-Square value is 0.9983, which is nearer to 1:1 line. This result 

shows that the regression line is very good fit. 
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Figure 4.6 Linear regression graph between target (FEA Result) and ANN prediction. 

 

 For different D1/D2 and skin, variation of buckling load per unit area of the 60
0
 hat-

stiffened panel and 75
0
 hat-stiffened panel with (EA)S/(EA)P are shown in  Figure 4.7 and 

Figure 4.8 respectively, which is obtained by FEA and ANN. It is observed that with the 

increase in (EA)S/(EA)P, buckling load per unit area increases upto certain values of 

(EA)S/(EA)P for all D1/D2 in a different skin, after that buckling load per unit area is 

approximately constant. The minimum value of (EA)S/(EA)P is obtained for all D1/D2 of the 

different skins from Figure 4.7 and Figure 4.8 at which the hat-stiffened panel has the 

maximum buckling load per unit area. Therefore, this minimum value is defined as 

optimum (EA)S/(EA)P of the hat-stiffened panel and hence number of the stiffener and 

depth of the hat-stiffened panel are increased to a certain limit for efficient buckling 
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performance of the panel without unnecessary increase in the weight of panel and the local 

buckling. The pitch length and depth of the hat-stiffener of efficient buckling performance 

of the panel can be found on the basis of obtained optimum (EA)S/(EA)P of the hat-

stiffened panel for different orthotropy ratio D1/D2. It is observed that the curve obtained 

from ANN results is similar to the pattern obtained by FEA. It is also observed that ANN 

prediction curve for D1/D2 = 150 and 250 is in-between the FEA curve for D1/D2 = 100 to 

200 and D1/D2 = 200 to 300 respectively. 

 

 

Figure 4.7 Buckling load/Area of the 60
0
 hat-stiffened panel vs. (EA)S/(EA)P. 
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Figure 4.8 Buckling load/Area of the 75

0 
hat-stiffened panel vs. (EA)S/(EA)P. 
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Figure 4.9 Comparing FEA results with ANN predicted results vs. (EA)S/(EA)P for 60

0 
hat-

stiffened panel with skin-2. 

 

 

Figure 4.9 and Figure 4.10 show the comparison the FEA results with ANN 

predicted results with a variation of (EA)S/(EA)P for 60
0
 hat-stiffened panel with skin-2 and 

75
0
 hat-stiffened panel with skin-1 and skin-3 respectively. It is observed that the results 

obtained from ANN is similar to the results of FEA data and sometimes it overlaps to each 

other for D1/D2 = 150 and 250 with skin-1, skin-2 and skin-3. Also, Table 4.2 and Table 4.3 

show the comparison the FEA results with ANN predicted of new data with percentage 

difference for 60
0
 hat-stiffened panel with skin-2 and 75

0
 hat-stiffened panel with skin-1 

and skin-3. The maximum and minimum percentage difference of ANN predicted with 

FEA results are found about 2.193% and 0.064% respectively. 
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Figure 4.10 Comparing FEA results with ANN predicted results vs. (EA)S/(EA)P for 75

0 

hat-stiffened panel with skin-1 and skin-3. 
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Table 4.2 Comparison of FEA results with ANN predicted results of 60
0
 hat-stiffened 

panel. 

A11/A22 D1/D2 D3/D2 (𝐸𝐴)𝑆

(𝐸𝐴)𝑃
 

Buckling Load/Area (MPa) % Difference 

 (
Y−X

X
) ∗ 100 FEA results 

(x) 

ANN results 

(y) 

1.00 

 

 

 

150 

 

250 

 

18.91 

27.83 

29.40 

44.07 
 

0.20 

0.57 

0.23 

0.67 
 

29.28 

55.99 

33.56 

86.40 
 

28.81 

56.28 

32.99 

85.89 
 

-1.61 

0.51 

-1.70 

-0.59 
 

 

Table 4.3 Comparison of FEA results with ANN predicted results of 75
0
 hat-stiffened 

panel. 

A11 / A22 D1 / D2 D3 / D2 (𝐸𝐴)𝑆

(𝐸𝐴)𝑃
 

Buckling Load/Area (MPa) % Difference 

 (
Y−X

X
) ∗ 100 FEA results 

(x) 

ANN results 

(y) 

1.68 

 

 

 

0.59 

150 

 

250 

 

150 

 

250 

10.02 

13.84 

14.76 

21.01 

12.80 

21.03 

18.94 

31.89 

0.16 

0.36 

0.18 

0.42 

0.22 

0.63 

0.26 

0.74 

20.403 

37.190 

23.050 

56.655 

36.360 

65.875 

41.079 

96.720 

20.73 

37.626 

23.556 

55.749 

36.337 

66.364 

41.619 

97.810 

1.602 

1.173 

2.193 

-1.599 

-0.064 

0.743 

1.315 

1.126 

 

In the above discussion, it has been found that the prediction of buckling load of the 

stiffened panel by ANN is in good agreement with FEA results for different cases. 

Therefore, ANN is good analytical computation tool for prediction of buckling capacity of 

the simply supported hat-stiffened panel under compressive loading. Hence, ANN tool can 

be used to design of complex problem of structural application in civil engineering and 

optimization of laminated composite structural. 
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4.5. Summary  

Buckling of the laminated composite 75
0
-hat-stiffened panel is analyzed by both finite 

element analysis and artificial neural network. FEA has been used both for generating the 

input data for training of ANN and numerical analysis of stiffened panels. Numerical 

studies are carried out with variation of four different parameters A11/A22, D1/D2, D3/D2 and 

(EA)S /(EA)P with 75
0
-hat-stiffeners. The optimum (EA)S/(EA)P increases with the 

decreasing A11/A22 of the skin for all D1/D2 and it also increases with the increasing D1/D2 

for the same skin. The well trained Neural network gives the best result with the help of 

network architecture 4-7-2-1. The result shows that ANN tool is good analytical 

computational tools for design of the complex structural problem in civil engineering and 

optimization of the laminated composite stiffened panel. The maximum and minimum 

percentage difference of ANN predicted and FEA results are obtained 2.193% and 0.064% 

respectively. Mean square error is 0.0140 and 0.8091 at the time of training and testing 

respectively for the best network. The R-Square value is 0.9983, which is nearer to 1. From 

above results and discussions, it is observed that ANN can be used efficiently for predicting 

of buckling load with different types of loading condition for better analysis and design of 

the stiffened panel. 


