LIST OF FIGURES

Fig. 2.1	Comparison of average power versus frequency and wavelength for various types of devices [Parker <i>et al.</i> , (2002)].	25
Fig. 2.2	Classification of Gyro devices.	30
Fig. 2.3.	Interaction structures of different gyro-amplifiers (a) gyro-TWT, and (b) gyroklystron, and (c) gyro-Twystron.	33
Fig. 2.4.	Schematic of a Gyrotron Traveling Wave Tube Amplifier.	36
Fig. 3.1	Schematic of TE_{0n} mode RF electric field in a waveguide with the electron beamlets.	60
Fig. 3.2	Phase distribution of electron by The initial phase distribution is shown by O.	62
Fig. 3.3.	Dispersion diagrams showing the operating regions of interaction for (a) gyrotron, and (b) gyro-TWT.	63
Fig. 3.4.	Projected electron orbit (circle) based on the instantaneous position and velocity of the electron at point B in the presence of uniform magnetic field.	66
Fig. 3.5.	A schematic of the interaction circuit with cylindrical coordinate system.	73
Fig. 3.6.	The orientation of radial and azimuthal forces on the electron in guiding center coordinates [Sirigiri (1999)].	75
Fig. 3.7.	Flow chart for the performance estimation of gyro-TWT amplifier.	89
Fig. 3.8.	Schematic diagram of the uniformly loaded RF interaction circuit of W-band gyro-TWT amplifier.	90
Fig. 3.9.	(a) Dispersion diagram for operating TE_{01} and possible oscillating modes for the loaded gyro-TWT amplifier, and (b) Dependence of gyro-TWT coupling co-efficient on the guiding radius for desired and competing modes.	92
Fig. 3.10.	Spatial power growth of the TE_{01} with 5% velocity spread of W-band gyro-TWT amplifier.	93

Fig. 3.11.	(a) Variation of RF output power and efficiency with pitch	94
	factor, and (b) Variation of power output, gain and efficiency	
	with respect to input frequencies.	

- Fig. 3.12. (a) Energy of electrons along length of the interaction circuit, 94
 (b) Phase variation of electrons along length of the interaction circuit for 5% velocity spread, and (c) Variation of Norm factor and Form factor with frequency.
- Fig. 4.1. Dispersion diagram of Ka-band gyro-TWT with operating and 109 competing modes.
- Fig. 4.2. Sectional view of the simulation model of Ka-band gyro-TWT. 110
- **Fig. 4.3.** (a) Vector plot of electric field pattern, and (b) Contour plots of 111 electric field of Ka-band gyro-TWT amplifier.
- Fig. 4.4. Snapshot of electron beamlets (a) initial interaction, and (b) after 113 interaction of Ka-band gyro-TWT amplifier.
- Fig. 4.5. (a) Temporal response of output signals amplitude for TE_{01} and 114 it's nearby competing modes, and (b) Temporal output power growth at output end for TE_{01} mode.
- Fig. 4.6 (a) Number of particles emitted in 35GHz gyro-TWT amplifier 115 and (b) Energy distributions of the electrons in the beam-wave interaction of Ka-band gyro-TWT amplifier.
- Fig. 4.7. (a) Variation of normalized axial momentum before bunching (at 2ns), and (b) Normalized axial momentum after bunching (at 200ns).
- **Fig. 4.8.** Frequency spectrum of probe signal placed inside the interaction **116** circuit.
- Fig. 4.9. (a) Variation of output power and efficiency with beam current, 116
 (b) Variation of output power and gain with pitch, and (c) variation of output power with frequencies.
- Fig. 4.10 Sectional view of the simulation model of heavy loaded W-band 117 gyro-TWT.
- Fig. 4.11. (a) Vector plot of electric field pattern, (b) Contour plot of 119 electric field pattern, and (c) Side view of the contour of fundamental W-band gyro-TWT amplifier.

Fig. 4.12.	Front view of electron beamlets (a) initial interaction, and (b) after interaction of W-band gyro-TWT.	120
Fig. 4.13.	Temporal response of signal amplitude for operating and various nearby competing modes.	122
Fig. 4.14.	Temporal output power growth of W-band gyro-TWT amplifier.	122
Fig. 4.15.	(a) Contour plot electric field pattern of TE_{01} mode along the propagation direction, (b) Wave particle power transfer in W-band gyro-TWT, (c) Electric field developed at input and output ports, and (d) Fourier Transform spectrum depicts the operating point of a fundamental harmonic gyro-TWT at 92GHz.	123
Fig.4.16.	(a) Variation of RF output power with drive RF power for different velocity spread, and (b) Variation of RF output power and gain with pitch factor.	124
Fig. 4.17.	(a) Variation of RF output power and efficiency with beam voltage, and (b) Variation of RF output power with driver frequencies.	124
Fig. 5.1.	(a) Cross-sectional view, (b) Efficiency of W-band gyro-TWT amplifier, and (c) Schematic of the tube using wedge shaped dielectric loaded RF interaction structure.	130
Fig. 5.2.	Dispersion diagrams of 91.4GHz gyro-TWT amplifier.	131
Fig. 5.3.	Dependence of the gyro-TWT amplifier coupling coefficient on guiding-center radius.	133
Fig. 5.4.	Transmission loss of the desired TE_{02} mode and its competing nearby modes.	134
Fig. 5.5.	Variation of transmission loss vs loss tangent.	136
Fig. 5.6.	Start oscillation current vs transmission loss for the desired and spurious modes.	137
Fig. 5.7.	Variation of the start oscillation current with pitch factor with different harmonic.	139
Fig. 5.8.	Origin of gyro-BWOs and their field variation along the RF interaction circuit	149
Fig. 5.9.	Dependence of start oscillation current on critical length.	151

Fig. 5.10.	(a) Variation of the critical length with the start current for TE_{01}^2 and TE_{02}^3 , and (b) Propagation loss of operating and competing modes with respect to the thickness of wedge.	152
Fig. 5.11.	Flow chart of large signal analysis of gyro-TWT.	154
Fig. 5.12.	(a) Spatial power growth in gyro-TWT amplifier for different RF driver power, and (b) RF output power and the saturated gain for different velocity spread.	155
Fig. 5.13.	(a,b) Energy and phase variation of electrons along length of the interaction circuit for 5% velocity spread, and (c) Variation of Norm and Form factor with frequency.	157
Fig. 5.14.	RF output power and the gain of second harmonic gyro-TWT amplifier.	159
Fig. 5.15.	(a) Cut view of 3D simulation model of gyro-TWT amplifier, and (b) Side view of the contour of electric field intensity along the propagation direction of waveguide.	160
Fig. 5.16.	(a) Temporal response of desired and competing modes at the output port, and (b) Temporal power growth in TE_{02} mode of gyro-TWT amplifier.	162
Fig. 5.17.	(a) Electric field developed at both input and output ports, and(b) Fourier transform of the electric field depicts the operating point of gyro-TWT at 91.4GHz.	163
Fig. 5.18.	(a) Variation of RF output power with respect to frequency for different widths of the ceramic wedges while the radial thickness is fixed, and (b) Variation of RF output power with respect to frequency different lengths of the ceramic rods.	164
Fig. 5.19.	(a) Variation of RF output power and the saturated gain for different beam pitch, and (b) Variation of RF output power and the saturated gain for different magnetic field.	164
Fig. 5.20.	(a) Variation of peak RF power and efficiency for different beam current, (b) Variation of saturated RF power for various driver RF power, and (c) Comparison of 3D PIC and analytical responses of W-band second harmonic gyro-TWT amplifier.	165
Fig. 6.1.	Projection of an electron orbit in tranverse plane, showing various orbital parameters.	170
Fig. 6.2.	Flow chart for the performance estimation of multimode gyro-	180

TWT amplifier.

Fig. 6.3.	Cross sectional view of ceramic loaded gyro-TWT.	181
Fig. 6.4.	Coupling coefficient C_{mn} as a function of ratio of beam to waveguide radii (r_b/r_w) for the different modes.	182
Fig. 6.5.	Temporal growth of the RF output power in the operating TE_{02} and competing mode (TE_{01}^2 and TE_{02}^3).	183
Fig. 6.6	Comparison in variation of RF output power and gain with drive power.	183
Fig. 6.7.	Comparison in variation of RF output power and gain with pitch factor.	184
Fig. 6.8.	Comparison in variation of RF output power with frequency.	185