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Compound Fault Prediction of Rolling Bearing 

CHAPTER 4 

 

Compound Fault Prediction of Rolling 

Bearing 
 

4.1    Introduction 
 

Catastrophic failure of mechanical systems due to faults occurring on the rolling bearing is still 

a great challenge. The operating state of rolling bearing significantly affects the accuracy, 

reliability, and useful life of any mechanical system. It is also important for plant safety and 

production efficiency [Hongbin et al., 1995]. Thus, the health monitoring and fault diagnosis 

of a rolling bearing is a big task. Vibration signal detection is an effective method for fault 

diagnosis of rolling bearings. However, various factors, such as unknown source signals, the 

complexity of the transmission channel, restriction of sensor installation location and 

experimental cost problem, etc., have brought certain difficulties to the equipment health 

monitoring and fault diagnosis.Ideally, it is better if a vibration signal contains only one defect 

when it is measured by an acceleration sensor under low-noise condition. But in reality, these 

faults are of multiple types and are compounded in nature. In real situations, a fault signal in 

functional part appears as a spike sequence, such as inner-race fault, outer- race fault, and roller 

fault of rolling bearings. Hence the vast majority of these signals obey non-Gaussian 
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distribution. A compound fault signal usually consists of multiple characteristic signals and 

strong confusion noise, which makes it a tough task to separate weak fault signals from them. 

To resolve the problem arisen above and to improve the detection of fault types and the health 

monitoring of rotating mechanical systems operating state, it is important to segregate the 

compound faults from acquired multimedia (acceleration sensor or acoustic) signals. The signal 

processing methods, such as Fast Fourier Transform (FFT) and Wavelet Transform (WT) has 

been used in such situations [Lou et al., 2004]. Huang et al. (1998) proposed EMD as an 

adaptive and efficient method to decompose nonlinear and non-stationary signals into Intrinsic 

Mode Functions (IMF). A combined Independent Component Analysis (ICA) and 

Instantaneous Frequency (IF) method to detect simultaneous machinery faults using sound 

mixture emitted by machines have been proposed by Atmaja et al. (2009). Arifiant et al. (2011) 

for remote condition monitoring.  The Sparse Support Vector Machine (SSVM) and Kernel 

Independent Component Analysis (KICA) were proposed as new approaches for complex 

industrial process monitoring and fault diagnosis by Ma et al. (2013). 

Combined Mode Function (CMF) technique has been used to combine the nearby IMF to get 

high-frequency components and low-frequency components by Grasso et al., (2016). The 

hybrid systems are better for compound fault diagnosis. To resolve the compound fault 

diagnosis problem of rolling bearings, Ensemble Empirical Mode Decomposition (EEMD) 

method [Huang et al., 2009] along with ICA technique, has been used to some degree of 

success [Wang et al., 2014]. However, if the frequency components in the signal are much 

complicated, it affects the decomposition results [Peng et al.,2005]. Therefore, CMF is useful 

as the pre-filter of EEMD to improve the effectiveness and accuracy of EEMD decomposition. 

Machine learning methods like Artificial Neural Networks (ANN) based approach has been 

used for the detection of faults in machines quite earlier due to high feature extraction capability 
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[Stefano et al., 1994]. Deep learning methods have recently proved their worth in handling big 

sized data. Convolution Neural Networks (CNN) have accomplished the state-of-the-art 

performances in recent past [ Ciresan et al., 2010], [Scherer et al., 2010], [Krizhevsky et al., 

2010]. CNNs are deep neural networks that have both alternating convolution and sub-

sampling layers. Convolution layers model the cells in the human visual cortex [Wiesel et al., 

1959]. CNN's are capable of performing automatic feature extraction and feature selection. 

To resolve the compound fault diagnosis problem of rolling bearings by separation of 

multimedia signals (obtained from acoustic or acceleration sensors), ensemble empirical mode 

decomposition (EEMD) method along with some classifier (like independent component 

analysis (ICA) technique) has been used to some degree of success [Wang et al., 2014]. But 

they are not found capable of detecting difficult faults existing on small balls of the bearing. In 

order to solve this problem, we are going to propose a new method based on use of Combined 

Mode Functions (CMF) for selecting the intrinsic mode functions (IMFs) instead of the 

maximum cross-correlation coefficient based EEMD technique, sandwiched with, Convolution 

Neural Networks (CNN), which are deep neural nets, used as fault classifiers. This composite 

CNN-CMF-EEMD method overcomes the deficiencies of other approaches, such as the 

inability to learn the complex non-linear relationships in fault diagnosis issues and fine 

compound faults like those occurring on small balls of the bearing. The difficult compound 

faults can be separated effectively by executing CNN-CMF-EEMD method, which extracts 

fault features easily and identifies them more clearly. 

Bearing faults cause vibration at fault related frequencies. The frequencies corresponding to 

different bearing faults can be determined, if, bearing dimensions and shaft rotation are known. 

Ball fault frequency fBD , is given by 
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  (4.1) 

Outer race fault frequency, fO , is given by 

  (4.2) 

Inner race fault frequency fI , is expressed as 

  (4.3) 

Where fS is the rotor speed in revolutions per second, BD is ball diameter, PD is pitch 

diameter, n is the number of balls, and the angle C is the contact angle which is zero for ball 

bearings. 

4.2     The Basic Theory of EEMD, CMF, CNN, and 

Proposed Method 
 

4.2.1          Empirical Mode Decomposition (EMD) 

EMD is an efficient technique proposed by Huang to decompose nonlinear and nonstationary 

signals into intrinsic mode functions (IMF). The IMFs are a representation of the natural 

oscillatory mode in the given signal and behave like basis functions. 

The following two conditions are satisfied by an IMF function: 

(1) The number of zero-crossings and number of extrema must be either equal or it may differ 

by at most by one in the whole dataset. 
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Figure 4.1: Flow chart of EMD 

(2) The mean value of the envelope defined by the local minima local maxima is zero at any 

point 
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4.2.2          Ensemble Empirical Mode Decomposition  

 

The principle of EEMD method utilizes the statistical characteristics of uniform frequency 

distribution. White noise is added to the original signal to make it continuous in different scales 

and, to avoid mode mixing. To avoid mode mixing, the EEMD method is implemented in 

following steps: First, a white noise of uniform scale and constant amplitude standard deviation 

is added to the original signal [Huang et al., 2009]. Secondly, IMFs of ensemble are calculated 

as the final results of EEMD. The added white noise series present a uniform reference frame 

in the time–frequency and time-scale space for signals of comparable scales to collate in one 

IMF and then cancel itself out (via ensemble averaging) after serving its purpose; therefore, it 

significantly reduces the chance of mode mixing and represents a substantial improvement over 

the original EMD. The effect of the added white noise can be controlled according to the well-

established statistical rule given as in equation (4.4) [Peng et al., 2005]. 

                                     ∈𝑛=
∈

√𝑁
                                                                            (4.4) 

Where N is the number of ensemble members, ∈ is the final standard deviation of error which 

is the difference between the input signal and the corresponding IMFs. In practice, the number 

of ensemble members is often set to 100 and the standard deviation of white noise series is set 

to 0.1 or 0.2. 

4.2.3  Combined Mode Functions  
 

The proposed approach is aimed at automatically reducing the n IMFs into a number K on of 

CMFs that are expected to better represent the multi-scale content of the multimedia signal. 

The proposed approach for CMF computation involves four consecutive steps:  

(1) Preliminary computation of sequential CMFs, denoted by   𝐶𝑠𝑘
(𝑡), k=1… n, 



 

71 
 

Compound Fault Prediction of Rolling Bearing 

(2) Computation of a dissimilarity index to determine a possible separation of IMFs into fewer 

CMFs, denoted by  𝐶𝑠𝑘
∗ (𝑡) , k=1…, K*,  

(3) Iterative decomposition into different numbers K*of CMFs, and  

(4) Determination of the optimal number K<n of final CMFs,𝐶𝑠𝑘
∗ (𝑡). 

 

Figure 4.2: Flow chart of CMF 
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4.2.4  The CNN Theory 
 

Convolutional Neural Network (CNN) consists of one or more convolutional layers (generally, 

with a sub-sampling step) and then followed by fully connected layers as in a 

standard multilayer neural network. A CNN consists of some convolutional and subsampling 

layers which are followed by fully connected layers. Then the input to a convolutional layer is 

an m × m × r image where r is the number of multimedia channels, which for RGB image 

has r=3. The convolutional layer will have k filters (or kernels) of size n ×  n ×  q where, n is 

smaller than the dimension of the image (m) and q can either be the same as the number of 

channels r or smaller and may vary for each kernel.  Each map is then sub-sampled typically 

max pooling over p x p regions with p ranges between 2 to 5 for smaller and larger inputs 

respectively.  The figure 4.3 illustrates a full layer in a CNN consisting of convolutional and 

sub-sampling sub-layers. 

 

 

Figure 4.3: First layer of a convolutional neural network with pooling 
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Let δl+1 be the error term for the  (𝑙 + 1)𝑠𝑡 layer in the network having a cost 

function  J(W, b; x, y)  where (W, b) are the parameters and (x, y) are the data for training and 

label pairs. If the   𝑙𝑡ℎ layer is densely connected to the  (𝑙 + 1)𝑠𝑡  layer, then the error for the  𝑙-

th layer is computed as 

            δ(l) = ((w(l))Tδ(l+1)). f ′( z(l))            (4.5) 

                     Where (f ′(z(l)) is derivative of the activation function 

and the gradients are          

                              ∇W(l)J(W, b; x, y) = δ(l+1)(a(l))T                      (4.6) 

If the   𝑙𝑡ℎ layer is a convolutional and subsampling layer, then the error is propagated through 

as  

             δk
(l)

 =unsample ((Wk
(l))

T
δk

(l+1)
) . f ′(zk

(l))            (4.7) 

Where k indexes the filter number, and  f ′(zk
(l)

) is the derivative of the activation function.  

Lastly, to calculate the gradient w.r.t to the filter maps,  δk
(l)

 the same way we flip the filters in 

convolution layer   

             ∇
Wk

(l)J(W, b; x, y) = ∑ ai
(l)m

i=1 rot90(δk
(l+1), 2)          (4.8) 

 

               ∇
bk

(l)J(W, b; x, y)   = ∑ (δk
(l+1)

a,b )(δk
(l+1))a,b                  (4.9) 

Where ∇
Wk

(l) is gradient of parameter W with respect to   𝑘𝑡ℎ filter, ∇
bk

(l) is gradient of 

parameter b with respect to   𝑘𝑡ℎ filter,  a(l) is the input to the    𝑙𝑡ℎ layer. The operation  ai
(l) ∗

(δk
(l+1))is the “valid” convolution between  𝑖𝑡ℎ input in the   𝑙𝑡ℎ layer and the error with 

respect to the 𝑘𝑡ℎfilter. 
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4.3         Data Description 
 

4.3.1        The Training Data 

 
The bearing data used here are provided by the Case Western Reserve University (CWRU) 

[Loparo, K.A et al.,2004]. The bearing data set was obtained from the experimental setup: (1) 

under normal condition (N), (2) with outer race fault (OF), (3) with inner race fault (IF) and 

(4) with roller fault (RF). The faults were introduced into the drive-end bearing of the motor 

with fault diameters of 0.18 mm, 0.36 mm and 0.54 mm, respectively. The detailed description 

of the datasets is shown in Table 4.1. 

The designed CNN has five layers, in which the unit number of the input layer is determined 

by the dimension of the samples, the unit number of the hidden layers is 600, and the unit 

number of the output layer is determined by the number of the health conditions which are ten 

here. We convert them into four classes by merging the different sizes of the same fault type 

into one class. The active functions of the CNN are hyperbolic. 

The weights of the CNN are initialized randomly, and the biases are initialized to zero. 

The maximum training epoch is 20; the learning rate is 0.0001, and the momentum is 0.9. 

4.3.2       The Testing Data 

 
We take the compound faults of bearing roller and outer-race as the research object, and 

artificially made flaws by a wire-cutting machine for the tests of fault diagnosis. The sampling 

frequency is 100 kHz, and the sampling time is 10 s, and the rotating speed of a machine is 900 

rpm. The bearing data used here are provided by the PloS One [Wang, H.et al.,2014] 
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Table 4.1: Data description 

 

Datasets Fault type Load (hp) The number of samples Fault diameter (mm) Classification label 

A/B/C/D Normal 1/2/3/1-3 200/200/200/600 0 1 

 Roller  200/200/200/600 0.18 2 

 Roller  200/200/200/600 0.36 3 

 Roller  200/200/200/600 0.54 4 

 Inner  200/200/200/600 0.18 5 

 Inner  200/200/200/600 0.36 6 

 Inner  200/200/200/600 0.54 7 

 Outer  200/200/200/600 0.18 8 

 Outer  200/200/200/600 0.36 9 

 Outer  200/200/200/600 0.54 10 

 

 

 

Table 4.2: Different fault classes 

 

Class/fault Normal Roller fault Inner fault Outer fault 

Level 0 1 2 3 
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                                                    Figure 4.4: The experiment set-up 

 

 

 

 

Figure 4.5: The compound fault signal 
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Figure 4.6:  The two CMFs after merging IMFs 
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– 

Figure 4.7: The IMFs obtained by decomposition of signal 
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4.4    Results and Analysis 
 

In this chapter, we are testing the CNN-CMF-EEMD method and ANN- CMF-EEMD method 

for Fault Diagnosis using for fault classification.  

A) Ensemble Empirical Mode Decomposition: 

In this section, the above-mixed signal is firstly decomposed to IMF by EEMD method. 

Then the cross-correlation coefficient of IMF and the original signal is calculated. The IMF 

can be observed in Figure 4.7 has been done using 900 rpm dataset [Wang, H.et al.,2014]. 

Figure 4.5 Shows the original input signal used. It can be seen clearly that the original 

compound fault signal is the combination of multiple weak signals and strong confusion 

noise(unwanted signals). The spectral analysis of Figure 4.7 shows impulsive peaks, which 

may be the fault frequency of strong noise signal. On decomposing the input signal using 

EEMD, we obtained 11 IMFs. 

B) Combined Mode Function: 

For the CMF analysis, the data is taken from the same 900 rpm data [Wang, H.et al.,2014]. 

The addition of all IMFs in sequential CMFs does not significantly change the spectra, apart 

from making more evident the contribution of multiples of the fundamental rotating frequency 

and other components that are not related to known defects. IMF selection seems to reduce the 

capability of detecting some embedded phenomena. 

In the first iteration, we got our condition between SSW and SSB satisfied. Hence, we stop the 

loop there only. This resulted in 2 CMFs. Fourier transforms, and the CMFs are shown in 

Figure 4.6. 
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Figure 4.8: The faults observed at roller (1.0) and outer race (3.0) by the proposed method 
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Figure 4.9: The faults observed at roller (1.0) and outer race (3.0) by the proposed method 

This shows that the whole 11 IMFs can be represented with the help of 2 CMFs. As the two 

CMFs can provide the information present in the 11 IMFs of EEMD, we proceed forward for 

further classification with 2 CMFs only. The proposed approach works in a fully data-driven 

way by evaluating the role played by each IMF in determining the spectral property of the 

signal. The main idea of the approach is to compute the empirical probability density function 

of the CMFs frequency spectra and compute a dissimilarity index between density functions of 

adjacent IMF to cluster them. The enhanced computation of CMFs is expected to reduce the 

dimensionality of the problem and improve the interpretation of the system health conditions 

on other IMF selection methods commonly used in practice.  The IMF’s generated from the 

EEMD technique are combined to form CMF’s, and such a combination can be interpreted as 

a new adaptive filter bank, which has the benefit of increasing the EEMD accuracy. 
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Table 4.3: The results of tests 1-6 for CNN-CMF-EEMD model 

Fault 

                ANN-CMF-EEMD             CNN-CMF-EEMD 

test1 test2 test3 test1 test2 test3 

Type Code CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

Healthy   0.0 01 01 00 07 10 23 04 14 2 9 03 15 

Ball   1.0 76 55 71 46 68 47 62 40 62 39 64 40 

Inner   2.0 02 13 12 26 03 07 01 05 07 08 16 26 

Outer   3.0 04 14 00 04 02 06 16 24 12 27 00 02 

Accuracy 85.43 86.95 87.59 91.65 90.53 93.33 

No of Tested 
samples 

83 83 83 83 83 83 83 83 83 83 83 83 

 

Fault 

             ANN-CMF-EEMD              CNN-CMF-EEMD 

test4 test5 test6 test4 test5 test6 

Type Code CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

Healthy   0.0 06 11 01 05 06 29 09 25 02 08 06 14 

Ball   1.0 04 22 62 30 03 17 62 24 69 45 65 40 

Inner   2.0 04 13 17 41 63 27 06 02 02 07 03 09 

Outer   3.0 64 37 03 07 11 10 06 17 10 23 09 20 

Accuracy 80.12 84.18 77.03 94.68 92.86 93.14 

No of Tested 
samples 

83 83 83 83 83 83 83 83 83 83 83 83 
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Table 4.4: The results of tests 7-12 for CNN-CMF-EEMD model 

 

Fault 

                ANN-CMF-EEMD            CNN-CMF-EEMD 

test7 test8 test9 test7 test8 test9 

Type Code CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF2 

Healthy   0.0 00 02 12 15 05 11 05 19 10 14 03 07 

Ball   1.0 66 40 01 08 66 47 64 34 64 43 62 45 

Inner   2.0 07 13 64 36 07 14 12 23 06 10 02 03 

Outer   3.0 10 28 06 24 05 11 02 07 03 16 16 28 

Accuracy 87.03 90.12 91.07 94.76 94.23 93.73 

No of Tested 
samples 

83 83 83 83 83 83 83 83 83 83 83 83 

 

Fault 

                ANN-CMF-EEMD                CNN-CMF-EEMD 

Test10 Test11 Test12 Test10 Test11 Test12 

Type Code CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF

2 

CMF

1 

CMF2 

Healthy   0.0 08 16 11 25 09 23 64 42 11 13 06 18 

Ball   1.0 73 57 63 32 12 24 00 04 64 43 62 27 

Inner   2.0 01 04 09 26 00 00 02 02 05 12 01 08 

Outer   3.0 01 06 00 00 62 36 17 35 03 15 14 30 

Accuracy 90.12 89.75 80.56 90.34 94.6 95.94 

No of Tested 
samples 

83 83 83 83 83 83 83 83 83 83 83 83 

 

 (C) Convolution Neural Network (CNN): The datasets used for training the neural networks 

are obtained from Case Western University (CWU) [158]. The training dataset is classified into 
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following types: The first class contains the normal healthy dataset, the second, third and the 

fourth classes contain roller, inner, and outer racer faults respectively. The test data has 83 

samples in each test and each sample have 1200 data points. With CNN-CMF-EEMD, we 

achieved an accuracy of ∼ 94 percent, with a learning rate of 0.0001, 600 hidden units, input 

1x30x40, conv1 14x28x38 pool1 14x14x19, conv2 16x13x18, and the 4-class classification. 

For other combination of learning parameters, its result is degraded, i.e., it is showing lower 

accuracy. These parameters were selected by purely trial and error basis under suggested 

guidelines, as we generally do in case of neural networks for a different type of data sets. 

When CNN is implemented with CMF and EEMD, 11 out of 12 results are of roller fault are 

detected precisely (Figure 4.8 and Figure 4.9). The outer race fault detection varied with less 

degree of fault indices. The Table 4.3 and Table 4.4 also show that the proposed CNN-CMF-

EEMD method has shown its capability for diagnosis of roller faults which are supposed to be 

most difficult to get diagnosed in rolling bearings. It is able to resolve it in a better way as 

compared to other available techniques. 

In general, Deep Neural Networks (DNNs) are trained under one of two general tasks: 

regression and classification. In a regression task, the network learns to generate a real-valued 

output that matches the ground-truth. In a classification task, the network learns to categorize 

an input to one of the training classes. To train a multi-class single-label classification network, 

SoftMax cross-entropy loss is by far the most popular loss function for the training regime, 

where the ground-truth is a binary vector consisting of a value one at the correct class index, 

and 0s everywhere else. During training, the objective is to minimize the negative log-

likelihood of the loss by multiplying the network's predictions to the binary ground truth 

vectors. In deep learning, existing CNN's are typically trained with a soft-max cross-entropy 

loss which considers the ground-truth class by maximizing the predicted probability of the 

correct label. This cross-entropy loss sometimes ignores the intricate inter-class relationships 
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that exist in the data. This ignorance is responsible for misinterpretation of inter-class 

relationship and wrong classification of CNN due to improper learning, which affects the 

performance of CNN-CMF-EEMD method. 

4.5    Conclusion 
 

The Proposed method is a composite of EEMD, CMF, and Convolution Neural Network 

techniques. In this chapter, we have used the EEMD technique to generate IMF for compound 

fault detection in the roller bearings along with CMF algorithm as selection criteria. The CMFs 

generated are used as input to CNN for fault diagnosis. The IMF’s generated from the EEMD 

technique are combined to form CMF’s, and such a combination is interpreted as a new 

adaptive filter bank, which has the benefit of increasing the EEMD accuracy. The proposed 

approach works in a fully data-driven way by evaluating the role played by each IMF in 

determining the spectral property of the signal. The minimal number of final CMFs is 

eventually determined by applying a criterion that inherits the cluster validity principle used in 

unsupervised classification. The application of the method showed that the method is suitable 

to reduce the number of relevant modes from many IMF to few CMFs and, simultaneously, to 

enhance the interpretation and characterization of multiscale phenomena of interest. This study 

showed the investigation of the nature and possible causes of bearing defects. The diagnosis of 

compound faults is improved by CNN-CMF-EEMD approach due to its extraordinary 

capability of detecting roller faults These faults were supposed to be most difficult to detect 

due to combined spin and the circular motion of rollers. For improving these classification 

results from CNN techniques, a known classified single-faulty dataset is diagnosed alongside 

with the unknown compound-faulty dataset, and the training of CNN is assumed to be correct 

only if it predicts the known fault accurately. Only those predictions of compound fault by 

CNN-CMF-EEMD are considered which predicted known faults precisely. The credibility of 
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CNN-CMF-EEMD technique is thus verified to classify the compound faults in the rolling 

bearing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


