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CHAPTER 1 

 

Introduction 
 

The catastrophic failure of engineering systems due to faults occurring on different vibrating 

components is still a great challenge. Health monitoring of such structures can be done as a 

preventive method to avoid huge financial losses by understanding the hidden messages in a 

different type of signals emitted by them. 

1.1 Motivation and Problem Statement 
 

Human safety is a massive motivation if someone thinks about aeroplane crashes, house or 

bridge collapses due to earthquake, or impacts where many lives have been lost. The associated 

financial losses due to replacement and uniaxiality are also very significant. It has been 

observed that: 

(1) In 1987, LOT Polish Airlines Flight 5055 Il-62M crashed because of failed bearings in 

one engine, killing all 183 people on the plane [104]. 

(2) Bearing is the main source of system failure. Motor bearing faults account for more than 

40 percent of the induction motor’s failure [284]. 
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(3) The Bearing is cheap, but the failure of bearing is costly. A $ 5,000 wind turbine bearing 

replacement can easily turn into a $250,000 project, not to mention the cost of downtime 

[161]. 

(4) The Gearbox bearing failure is the top contributor of the wind turbines downtime [29], 

 

 

Figure 1.1: In 1987, LOT Polish Airlines Flight 5055 Il-62M crashed because of failed 

bearings in one engine, killing all  183 people on the plane 

 

Figure 1.2: Offshore wind turbines 

[197]. The second and probably dominant motivation (not surprisingly) that drives forward the 

research in this field is the need of private or public industries. A significant number of 

structures undergo routine inspections and maintenance to ensure the structural stability of the 

system. Detection of damage at an early stage could entail big economic savings. The costs of 
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these routine inspections could be significantly reduced if these inspections are shown to be 

unnecessary when a structure continues to be healthy, and this could automatically be indicated 

by implementing a SHM system. SHM could offer robust and online monitoring and necessary 

maintenance or repairs could be addressed based on this technology. Imagine the downtime 

cost of an offshore wind turbine or an offshore oil platform when a structure may undergo 

routine maintenance or emergency component replacement, which, in turn, would be an 

economic and environmental disaster. 

Furthermore, nowadays, companies both in energy (an example is nuclear power plants) and 

the aerospace industry are keen on extending the initial lifetime of these structures. Of course, 

with aging comes "life fatigue" and economic issues are arising regarding the stability of these 

structures. SHM could offer a vital tool in inspecting continuously the systems for potential 

failures. Last but not the least is the defence industries. The military market is keen on 

developing SHM technology to detect damage and predict the operational lifetime of the 

structure during combat missions. SHM is the technology that will potentially allow the time-

based inspection and maintenance to move into condition-based maintenance approaches. The 

basic philosophy behind the condition-based maintenance is that a holistic and robust sensor 

network will monitor the system and via smart measurement, processing will arise an alert to 

the operator in case of system abnormalities. 

 

The diagnostic methods to identify these faults can be based on: 

  Temperature measurements, 

   Infrared recognition, 

   Radio frequency (RF) emissions monitoring, 
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  Vibration monitoring, 

  Acoustic noise measurements, 

  Motor current signature analysis (MCSA), 

  Artificial intelligence and Machine Learning based techniques 

Structural Health Monitoring (SHM) refers to the process of detection, diagnosis, and 

prognosis of damage in engineering structures and to evaluate the condition of existing 

structures for assurance of the safety of users. SHM research spreads to the areas of civil, 

mechanical, and aerospace engineering. During the early stages of development of SHM, the 

primary method of monitoring of structures was a visual inspection. As part of solid 

engineering interest, it probably started around the decade of the 1970s [49]. 

Structural Health Monitoring (SHM) has three components; Detection, Diagnosis, and 

Prognosis. Detection is a warning issued by the SHM technique that some abnormality has 

occurred. Diagnosis notifies the type of fault, its location, and its extent. Diagnosis has two 

categories, passive and active diagnosis. Prognosis is for computation of the severity of the 

crack in terms of fracture mechanics parameters, and its Remaining Useful Life (RUL). Hence 

the objective of structural health monitoring is a four-fold task, i.e., determination of damage 

existence, determination of damages geometric location, quantification of damage severity, and 

prediction of remaining useful life of the structure. 

This chapter aims to provide a general introduction to the field of SHM and the advantages of 

a robust SHM system. 
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1.2 The Fundamental Axioms of Structural Health 

Monitoring  

As stated by Farrar and Worden (2012), the fundamental axioms of structural health monitoring 

are basic guiding principles to design any SHM tool/procedure. They are as follows: 

Axiom I: All materials have inherent flaws or defects. 

Axiom II: The assessment of damage requires a comparison between two system states. 

Axiom III: Identifying the existence and location of damage can be done in an unsupervised 

learning mode, but identifying the type of damage present and the damage severity can 

generally only be done in a supervised learning mode. 

Axiom IV a: Sensors cannot measure the damage. Feature extraction through signal processing 

and statistical classification is necessary to convert sensor data into damage information. 

Axiom IV b: Without intelligent feature extraction, the more sensitive a measurement is to 

damage, the more sensitive it is to changing operational and environmental conditions. 

Axiom V: The length- and time-scales associated with damage initiation and evolution dictate 

the required properties of the SHM sensing system. 

Axiom VI: There is a trade-off between the sensitivity to damage of an algorithm and its noise 

rejection capability. 

Axiom VII: The size of damage that can be detected from changes in system dynamics is 

inversely proportional to the frequency range of excitation. 
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1.3       The Definition of Defect, Damage and Fault  

As stated by Farrar and Worden (2012), A defect is inherent in the material, and statistically, 

all materials will contain a known number of defects. This means that the structure will operate 

at its optimum if the constituent materials contain defects. 

Damage can be defined as changes that are introduced into a system, either intentionally or 

unintentionally, that will affect the current or future performance of the system. This system 

could be a structure or a biological organism. Damage is when the structure is no longer 

operating in its ideal condition, but it can still function satisfactorily, but in a sub-optimal 

manner. 

In the context of SHM, damage can be defined as intentional or unintentional changes to the 

material and geometry of the structure [61]. The changes can be found at the macroscopic level 

as well as the microscopic level. Macroscopic change refers to the cracks due to fatigue, impact, 

and corrosion. The microscope changes are concerned with material matrix abnormalities. A 

few decades earlier, the microscopic material faults were difficult to detect in much advance. 

Now, with a lot of development in material technology, it is quite possible to find failures due 

to a material fault.  

A fault is when the structure can no longer operate satisfactorily. If one defines the quality of 

a structure or system as its fitness for purpose or its ability to meet customer or user 

requirements, it suffices to define a fault as a change in the system that produces an 

unacceptable reduction in quality. 
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1.4 The Significance of SHM 

The significance of SHM lies in the fact that many incidents occur where a building or bridge 

collapses, or, an aeroplane crashes, resulting in the massive loss of human life. Another factor 

which motivates for SHM in the industries is the economic aspect. A significant number of 

structures undergo routine inspections and maintenance to ensure the structural stability of the 

system. If the damage is detected at an early stage, a lot of money can be saved, which enhances 

profitability. By applying intelligent SHM techniques, unnecessary routine maintenance can 

be avoided and thereby reduce the downtime cost of the product. A robust online SHM system 

can avoid the failure of a power plant turbine due to the sudden requirement of replacement of 

bearings. We suffer a huge downtime cost in such cases. Furthermore, the power generation 

companies and aerospace industries focus a lot on increasing the lifetime of 

equipment/machinery. The issue of reliability and availability of these structures becomes 

critical with aging. 

SHM could offer a vital tool in inspecting continuously the systems for potential failures. Last 

but not the the least is the defence industry. The defence industry, which has a worldwide 

market for arms and ammunition, has significant SHM application. SHM is the technology that 

will potentially allow the time-based inspection and maintenance to move into condition-based 

maintenance approaches. The basic philosophy behind the condition-based maintenance is that 

a holistic and robust sensor network will monitor the system and via smart measurement, 

processing will arise an alert to the operator in case of system abnormalities. The critical steps 

for a holistic SHM investigation are well described in Rytter's hierarchy (1993) and Worden 

and Dulieu-Barton (2009) with several small suggestions and additions to this hierarchy but 

without changing the nature of Rytters description. These levels can be summarised as follows: 

 Level One: Existence of damage to the system (Detection). 
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 Level Two: Identification of where damage has appeared in the system (Localisation). 

 Level Three: Which is the specific kind of damage (Type). 

 Level Four: Investigation of damage severity (Quantification). 

 Level Five: Prediction of the remaining useful life in the system (Prognosis). 

1.4.1 SHM for Rotating Machinery 

SHM, mainly referring to damage detection in rotating machinery [300], is sometimes termed 

as Condition Monitoring (CM). CM has demonstrated considerable success and is considered 

a mature technology compared to SHM in general. Several factors can be considered as the key 

elements for this more established approach. The basic ones are, that rotating machinery gives 

specific dynamic response for specific fault classes, and as a result, failure detection and 

identification are more precisely readable [213]. This is also aided by the fact that machinery 

operates in a controlled environment, and their size is relatively small compared to the size of 

the structures SHM targets (bridges or skyscrapers). Non-Destructive Evaluation (NDE) is 

another method for this purpose.  

 

 

Figure 1.3: A rotary machine monitored using vibration signals analysis 

NDE has been used successfully used in many practical engineering applications [300],[239]. 

In contrast with SHM that operates continuously and online, NDE is commonly carried out 
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offline. NDE procedures exploit acoustic emissions, X-rays, and microscopy for evaluation. 

NDE tools are applied to the small parts of big structures where the damage is supposed to 

exist. A simple flow chart for vibration analysis of rotating machinery is shown in Figure 1.3.    

 

1.5 Pattern Recognition 

In the machine learning community, sensors cannot directly measure the types of faults on the 

rotating machinery. That's why features are extracted from the raw material and further 

processed by Signal Processing tools. The aim of feature extraction is to reduce the 

dimensionality of raw data measured through sensors. In machine learning, this drawback is 

referred to as the curse of dimensionality. After the extraction of these features, a suitable 

algorithm is devised which can distinguish the different faults existing on the rotating 

machinery/structures. The classification of damage is a pattern recognition problem and is the 

part of the machine learning family. 

For the purpose of classification of faults, Machine Learning is applied in two ways, namely 

supervised learning and unsupervised learning. In terms of the SHM field, supervised learning 

means, any procedure of classification of a feature, which is trained with measurements 

labelled by all conditions of interest. At the first level, this is translated simply into the 

separation between the damaged and undamaged condition of the structure. At higher levels, 

via supervised learning, identification of different types of damage or localization of damage 

can be obtained. In several damage detection approaches, it is never possible, or it is very 

difficult to obtain true measurements for all possible damage classes, especially in high-value 

or complex structures such as composite systems. Furthermore, data that is collected during a 

damaged state of the structure is very rare. The premise of novelty detection techniques is to 

seek the answer to a simple question; given a newly presented measurement from the structure, 
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does one believe it to have come from the structure in its undamaged state? Through the 

possession of data assured to be from the normal, undamaged condition of the structure, one 

can generate a statistical representation of the training data. After this training procedure, any 

generated data from the system can be tested and compared to the undamaged model; any 

suspicious deviation from normality can be said to be indicative of damage. The advantage of 

novelty detection is clear; any abnormality defines a new situation characterized by a truly 

new event for the structure. 

1.6 Machine Learning (ML) 

Machine learning (ML) is the study of algorithms and statistical models that computer systems 

use, relying on patterns and inference. Machine learning algorithms build a mathematical 

model based on sample data, known as" training data," to make predictions or decisions. It is 

seen as a subset of artificial intelligence. 

Machine learning is divided into three groups: Supervised, unsupervised and semi-supervised. 

Supervised machine learning is a type of machine learning where the sample in the data set is 

labelled. The classifier uses in training set to learn a set of parameters and tries to classify the 

testing set successfully using the learned parameters. Unsupervised machine learning methods 

try to find hidden structures in unlabelled data. Semi-supervised machine learning uses both 

labelled and unlabelled data. Commonly conducted practice in semi-supervised machine 

learning is how to use a small amount of labelled data and a large amount of unlabelled data 

for training, and a large amount of labelled and a small amount of unlabelled data for testing. 

All supervised machine learning methods used in training data to train the hypothesis function 

for future prediction h (θ). Training data is defined as such: 
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                                                S= {(Xi ,Yi ) | ∀ i ϵ {1,.....,N}}                                                (1.1) 

Where S is the training data set, Xi extracted features, Yi is the classification of ith member of 

training data and N is the number of subjects for the training of hypothesis function h (θ), 

where (θ) = {[𝜃]𝑖  | ∀i ∊ {1, …….,.  N}} for future predictions. 

1.6.1         Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a non-probabilistic and binary linear classifier. The main 

idea behind SVM is the creation of distinct borders between partitions of given data to break 

multiple sections that could be used for classification purposes with the future data. Support 

Vector Machines are trained to produce a function that can predict the classification of future 

data. Support Vector Machines are vector machines are margin optimization models that can 

classify non-linear data using hyperplanes, rather than greedy output search systems. They use 

the data set S as to train the hypothesis function h (θ) for future prediction. However; the 

methodology is a bit different from other methods because SVMs' are used to classify data with 

already known clusters. Support Vector Machines initially determine the support vectors, 

which are the border elements of a cluster. Then a hyperplane equation is derived using these 

support vectors. The following equation is solved for hyperplane parameters: 

𝑋𝑆*W- b = { 𝑌𝑆|∀ X, W, Y }                                         (1.1)                       

Where W is the set of normal vectors that are defined as 



 

12 
 

Introduction 

W = { 𝑊𝑖(x, y) | ∀ ϵ {1, ......, t}}, Xs is sth support vector, b is constant in the hyperplane equation, 

Y is the solution set of the equation. 

1.6.2 Neural Networks (NN) 

Neural networks are a set of algorithms, modelled loosely after the human brain, that is 

designed to recognize patterns. They interpret sensory data through a kind of machine 

perception by labelling or clustering raw input. The patterns they recognize are numerical, 

contained in vectors, into which all real-world data, be it images, sound, text, or time series, 

must be translated. 

1.6.3 Classification by Neural Networks 

All classification tasks depend upon labelled datasets; that is, humans must transfer their 

knowledge to the dataset in order, for a neural network to learn the correlation between labels 

and data. This is known as supervised learning. 

1.6.4 Clustering 

Clustering or grouping is the detection of similarities. Deep learning does not require labels to 

detect similarities. Learning without labels is called unsupervised learning. Unlabelled data is 

the majority of data in the world. One law of machine learning is: the more data an algorithm 

can train on, the more accurate it will be. Therefore, unsupervised learning has the potential to 

produce highly accurate models. 
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1.6.5 Neural Network Elements 

Neural Network is composed of several layers. The layers are made of nodes. A node is just a 

place where computation happens, loosely patterned on a neuron in the human brain. A node 

combines input from the data with a set of coefficients, or weights. These input-weight products 

are summed, and then the sum is passed through nodes so-called activation function. The 

activation function determines the output a node will generate, based upon its input. In Deep-

learning, the activation function is set at the layer level and applies to all neurons in that layer. 

If the signals pass through, the neurons, they are said to be "activated." A node layer is a row 

of those neuron-like switches that turn on or off as the input is fed through the net. 

A neural network can be thought of as a directed graph composed of nodes that represent the 

processing elements (which are like neurons), and arcs that represent the connections of the 

nodes (like synaptic connections) and directionally on the arcs, that represent the flow of 

information, as illustrated in the Figure 1.4. 

 

Figure 1.4: Neural network model 
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The signal is propagated through network and output signal, which can be put to a threshold to 

yield and output for affected (case) or unaffected(control). 

Let’s define 

= Weight of the connection between node j in layer k with node i in layer k+1 

        = The output value of node J in layer k 

NN can be expressed as a weighted linear combination of inputs. For example, the output from 

input nodes in the first hidden layer can be written as: 

                                         (1.2)                     

Where σ is in nonlinear activation function usually chosen as to be the sigmoid 1/ (1+ 𝑒−𝑘 ) 

and 𝑤𝑗𝑖
0  are the weights for the connections between input nodes Xi  and node Hj1

 in hidden 

layer 1. The output for the nodes in subsequently hidden layers can be written as a recurrence 

relation between the previously hidden layer nodes 

                        (1.3) 

and the target output can be modelled as a linear combination of hidden layers as; 

Output = ∑ 𝐻𝑗
(𝑘)

𝑗𝑘                                               (1.4) 
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The input pattern vector that is propagated through the network can consist of continuous or 

discrete values. This is also true for the output signal. Designing the network architecture must 

take into account the representation of the input pattern vector and its interaction with the 

network while propagating information through the network. Thus, the data representation 

must be suitable to detect the features of the input pattern vector so that it produces the correct 

output signal. A large field of neural network design has been devoted to the question of proper 

data representation. 

Since learning and memory are thought to be associated with the strength of the synapse 

setting the strength of neural network connections is the mechanism that allows the network 

to learn the connection strength together with their input to the activity level, which is then 

used as input for the next layer of the network. Since learning is associated with synaptic 

weights, the backpropagation algorithm minimizes the error by changing the weights 

following each pass to the network. Hill -climbing algorithm make small changes to the 

weights until it reaches a value to which any change makes the error in weight higher, 

indicating that error has been minimized 

1.6.6 Deep-Learning Neural Networks 

Earlier versions of neural networks such as the first perceptrons were shallow, composed of 

one input and one output layer, and at most one hidden layer in between. More than three 

layers (including input and output) qualifies as "deep" learning. In deep-learning networks, 

each layer of nodes trains on a distinct set of features based on the previous layers output. The 

further one advances into the neural net; the more complex the features the nodes can 

recognize since they aggregate and recombine features from the previous layer. 

This is known as a feature hierarchy, and it is a hierarchy of increasing complexity and 

abstraction. It makes deep-learning networks capable of handling very large, high-dimensional 
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data sets with billions of parameters that pass through nonlinear functions. Deep-learning 

networks perform automatic feature extraction without human intervention, unlike most 

traditional machine-learning algorithms. When training on unlabelled data, each node layer in 

a deep network learns features automatically by repeatedly trying to reconstruct the input from 

which it draws its samples, attempting to minimize the difference between the networks 

guesses and the probability distribution of the input data itself. Restricted Boltzmann Machine 

(RBM), for examples, creates so-called reconstructions in this manner. 

1.7 Data-Driven Methods for Fault Diagnosis 

 

A quantitative knowledge-based or Data-Driven Methods is to essentially formulate the 

diagnostic problem solving as a pattern recognition problem. Quantitative information (or 

features) can be extracted by using either statistical or non-statistical methods. Therefore, the 

quantitative knowledge-based fault diagnosis can be roughly classified into statistical analysis-

based fault diagnosis and non-statistical-analysis-based fault diagnosis. 

1.7.1 Statistical-Analysis-Based Data-Driven Fault Diagnosis 

 

Under a statistical framework, the quantitative knowledge-based fault diagnosis methods are 

mainly composed of Principal Component Analysis (PCA), Partial Least Squares (PLS), 

Independent Component Analysis (ICA), statistical pattern classifiers, and the most recently 

developed Support Vector Machine (SVM). It is evident that the methods above require a large 

amount of training data to capture the key characteristics of the process by using statistical 

analysis. 
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PCA is the most popular statistically-based monitoring technique, which is utilized to find 

factors with a much lower dimension than the original data set so that the major trends in the 

original data set can be properly described. PCA-based fault diagnosis methods have been 

investigated in depth and have successful applications in complex industrial systems. For 

instance, a nonlinear extension of the PCA was developed in [289] for diagnosing diesel 

engines. For a time-varying industrial process (e.g., a non-isothermal continuous stirred tank 

reactor system), a recursive PCA fault diagnosis method was presented in [55]. Owing to the 

ability of denoising original signals and improving the signal-to-noise ratio, probabilistic PCA-

based fault diagnosis techniques were employed to monitor a rolling bearing with an outer race 

fault [109]. By integrating y-indexes, residual errors, and faulty sensor identification indexes 

with the PCA, two readily implementable and computationally efficient fault diagnosis 

approaches were addressed for gas turbine engines [326]. 

PLS is one of the dominant data-driven tools for complex industrial processes. The recent 

development of PLS-based monitoring and fault diagnosis can be found in [48],[276],[329]. 

Specifically, in [48], a data-driven scheme of key performance indicator prediction and 

diagnosis was proposed for both static and dynamic processes, which offered an alternative 

solution to the PLS method with simplified computation procedures. By combining kernel-

based PLS discriminant analysis techniques and pseudo sample projection, a fault diagnosis 

method was presented in [276], providing efficient fault discrimination and enabling a correct 

identification of the discriminant variables in complex nonlinear processes. An improved 

structure, i.e., Total Projection to Latent Structures (T-PLS), was addressed in [329] based on 

further decomposition for the obtained PLS structure. The proposed T-PLS-based method can 

well detect quality-relevant faults in industrial processes subjected to a variety of raw materials 

and changeable control conditions. 
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ICA plays an important role in real-time monitoring and diagnosis for practical industrial 

processes as it allows latent variables not to follow a Gaussian distribution. Recently, a kernel-

ICA-based fault isolation method was proposed in [327] for non-Gaussian nonlinear processes. 

In [268], defect detection was investigated for solar modules by using ICA basis images 

detection. In [78], an ICA-based fault diagnosis technique was applied to the monitoring and 

diagnosis of a rolling-element bearing. 

As a matter of fact, data-driven statistical tools such as the PCA, the PLS, and the ICA have 

been widely employed in feature extraction for microarray gene expression data, which 

facilitate and ease the understanding of biological processes [255]. On the other hand, a 

microarray enables expressions of tens of thousands of genes to be represented on a small array 

of coloured image dots, which may be utilized for a quick fault diagnosis for industrial 

processes. Motivated by the microarray visualization and utilizing simple statistical analysis of 

the measured values of different sensors and the graphical synopsis of the results of such 

analysis, a quick diagnosis of the key variables/steps that cause the fault in the final quality 

was achieved in [164]. 

The SVM is a relatively new machine learning technique relying on statistical learning theory, 

which is capable of achieving high generalization and of dealing with problems with low 

samples and high input features. The SVM is regarded as a potential technique for classifying 

all kinds of data sets. The initial attempts of applying the SVM to condition monitoring and 

fault diagnosis began in the late 1990s [259], [218]. The SVM-based machine condition 

monitoring and fault diagnosis methods dated to 2006 were well documented and reviewed in 

[294]. Recent results of the SVM-based fault diagnosis can be found in [319],[184],[220],[317]. 

Specifically, by integrating a kernel function and cross-validation, an SVM-based fault 

diagnosis approach was proposed in [319] for the Tennessee Eastman process, which showed 

a superior fault detection ability over the conventional PLS algorithm. With the aid of a genetic 
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algorithm for parameter tuning, an SVM-based fault diagnosis method was presented in [31], 

which showed improving diagnosis performance. Utilizing k-nearest neighbour (KNN) 

algorithms to estimate plausible values to replace the missing values in the data set before SVM 

learning, an effective SVM based fault diagnosis technique was addressed in [220] for power 

transformers. In [317], a smart SVM-based functional fault diagnosis method that exploited 

multiple kernel functions and utilized incremental learning was proposed. By leveraging a 

linear combination of single kernels, the multi-kernel SVM method can achieve accurate faulty 

component classification based on errors observed, whereas incremental learning can allow the 

diagnosis system to quickly adapt to a new error observation, leading to even more accurate 

fault diagnosis. 

1.7.2 Machine Learning-Based (Non-Statistical) Data-Driven Fault Diagnosis 

 

Owing to its powerful ability in nonlinear approximation and adaptive learning, A Neutral 

Network (NN) has been the most well-established in -statistical-based data-driven fault 

diagnosis tool. In terms of topology, the NN can be classified into radial basis networks, 

recurrent dynamic networks, self-organizing maps, backpropagation networks, and extension 

networks. According to the learning strategy, NN-based fault diagnosis can be categorized into 

supervised-learning-based fault diagnosis and unsupervised-learning-based fault diagnosis. By 

using unsupervised learning, the knowledge base can be extracted from the historical data to 

emulate normal system behaviour, which is utilized to check whether the behaviour of the real-

time process deviates from the normal system behaviour. By using supervised learning, the 

knowledge bases for normal systems and faulty conditions are all extracted, which are then 

utilized for real-time monitoring. Recent developments of the NN can be found in a variety of 

real-time applications, e.g., for combustion engines [237], nuclear processes [53], induction 

machines [267], [138]. 



 

20 
 

Introduction 

Fuzzy logic (FL) is an approach of partitioning a feature space into fuzzy sets and utilizing 

fuzzy rules for reasoning, which essentially provide approximate human reasoning. FL has 

been successfully employed for fault diagnosis. For instance, in [333], FL was employed to 

represent a fuzzy knowledge base that was extracted from the current analysis and applied to 

detect misfiring in the switches in a Pulse Width modulation (PWM) source inverter induction 

motor drive. Recent developments have shown an interest to combine FL with other 

knowledge-based techniques such as expert systems or an NN for solving an engineering-

oriented diagnosis issue or getting better diagnosis performance. 

1.7.3 Joint Data-Driven Fault Diagnosis 

 

In some practical applications, the statistic and non-statistic fault diagnosis data-driven 

methods are often utilized jointly. For instance, in [37], a Bayesian network and a recurrent 

NN were integrated to diagnose and isolate faults in induction motors, where the NN was

 

 

 Figure 1.5: Fault diagnosis techniques  
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used to train the data from the system under normal operating conditions and known faulty 

conditions, whereas the stochastic Bayesian network was employed to produce random 

residuals. 

A supervised method and an unsupervised method are two major training and search manners 

in data-driven fault diagnosis. For the unsupervised approach, the data recorded from the 

normal operation of the practical system are trained to form a knowledge base, which is then 

utilized to monitor the deviations against a real-time process. In the supervised method, a 

classifier is trained on the annotated historical data recorded from both normal and faulty 

conditions, which is then employed for fault prediction. Supervised and unsupervised methods 

have their own advantages and disadvantages. To enhance their advantages, a natural idea is to 

combine the supervised method and the unsupervised method for fault diagnosis. Joint methods 

are again classified as signal processing and machine learning type methods as shown in Figure 

1.5. 

1.8       Contributions of the Thesis Work  
 

This thesis provides several significant contributions to the analysis and modelling of machine 

learning-based data-driven methods which lay the foundations for the solution of structural 

health monitoring problems. We presented the application of machine learning methods for 

early prediction of the failures of self- priming centrifugal pumps with the help of methods like 

Support Vector Classification (SVC), Multinomial Logistic Regression (MLR), Artificial 

Neural Networks (ANN) and especially, Convolution Neural Networks (CNN). The thesis 

presented a smart enhancement technique which shows its effect in providing better 

classification results in all machine learning algorithms. 



 

22 
 

Introduction 

Our main focus has been how to apply deep learning methods for the structural health 

monitoring of mechanical systems. We succeeded in our task in identifying the early failures 

of bearings due to the cracks developed on small rollers. 

In this research work, we have addressed the problem of estimation of Remaining Useful Life 

successfully, as an important part of prognostics. A new method based on stacked gradient 

boosted trees has been explored and implemented successfully. 

The accuracy, reliability, and computational cost are crucial issues in any efficient method. The 

machine learning methods require the least time and least number of iterations to complete the 

process of detection of the fault. 

1.9 Organization of Thesis 
 

The research work documented in this thesis comprises six chapters. The details of each chapter 

are as follows: 

Chapter 1 consists of a general introduction, major bearing faults, and their root causes. The 

reasons for and procedure of using vibration-based health monitoring techniques are discussed. 

Various possible sources of nonlinear vibrations in rolling element bearings are summarized. 

This chapter also includes the objective and organization of this thesis. 

Chapter 2 comprises the survey of published literature. It includes a discussion on the use of 

various signal processing and machine learning techniques for health monitoring. A 

comprehensive evaluation of fault diagnosis and prognosis methods have been discussed. 

. 

Chapter 3 This chapter deals with the development of an enhanced data technique, which is 

very useful for the smaller size of available data. It is proposed to increase the size of data to 
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multiple times until a good classification accuracy is acquired. The method shows that the 

neural networks perform very efficiently when such type of enhancement is done. It has been 

elaborated for evaluating the classification of faults of self-priming centrifugal pumps. The 

classification of pump faults is achieved to almost 100 percent by deep neural networks. The 

precision-recall curves have been used to evaluate the performance of five machine learning 

models. 

Chapter 4 presents a new compound fault diagnosis method of rolling bearing. We have 

proposed a method based on the use of Combined Mode Functions (CMF) for selecting the 

Intrinsic Mode Functions (IMFs) with EEMD technique, sandwiched with, Convolution Neural 

Networks (CNN), which are deep neural networks, used as fault classifiers. This composite 

CNN-CMF-EEMD method overcomes the deficiencies of other approaches, such as the 

inability to learn the complex non-linear relationships in fault diagnosis and, to detect the fine 

compound faults occurring on small balls of the bearing. The difficult compound faults are 

separated effectively by executing CNN-CMF-EEMD method. It makes the fault features more 

easily extracted and more clearly identified. 

In Chapter 5, the remaining useful life of an engine is assessed. This chapter presents a novel 

machine learning model for this task, which includes a smart ensemble of Gradient Boosted 

Trees (GBT) and feed-forward neural networks. It incorporates discussions on the poor 

performance of Multi-Layer Perceptron (MLP) and the need of ensemble models. Initial stages 

of data exploration and pre-processing are also comprehensively documented. Experiments are 

performed on the four run-to-failure datasets by Commercial Modular Aero-Propulsion System 

Simulation (C-MAPSS). It concludes by presenting evaluations of multiple prediction models 

like MLP, Support Vector Regression (SVR), Convolution Neural Networks (CNN) and 

Gradient Boosted Trees (GBT). 
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Introduction 

Finally, Chapter 6 summarizes the important conclusions drawn from this research work. 

The few important suggestions for future work are also presented in this chapter. 

1.10 Conclusions 
 

The general motivation behind the SHM was presented in this introductory chapter, including 

the basic elements of this research to be applied in practice. Machine learning based SHM is a 

field of research with increased interest due to the major advantage of operating continuously 

and globally. The challenges are the development of a robust and online SHM system that is 

capable of detecting early critical fault types during the structure operation independently, in 

changing environmental and operational conditions. This thesis undertakes a serious attempt 

to apply SHM technology in a solid and fast manner by investigating how to simplify complex 

machine learning approaches into a simpler form and to determine a robust way to resolve the 

often-encountered problem of external operational factors. 

 


