List of Figures

Chapter 1

Figure 1.1: The chronological order of the discovery of new carbon nanomaterials

Figure 1.2: Schematic Illustrating the Chemical Structure after Synthesis Process of CQDs

Figure 1.3: Electrophoretic profile that led to the discovery of CQDs in 1% agarose gel under 365 nm UV light

Figure 1.4: The absorption and PL emission spectra of CQDs after different incident excitation wavelength

Figure 1.5: Schematic Representation of the PL emission characteristics of different species produced at different temperatures for organic fluorophores (blue) and carbonaceous cores

Figure 1.6: *In vivo* fluorescence image of a mouse injected with red-emitting CQDs

Figure 1.7: A Schematic Illustrating the functionalisation of PEG-coated CQDs with FA and Dox delivery for cancer therapy

Figure 1.8: A schematic of a Typical On-Off-On Fluorescence Ouenching Mechanism for the detection of an analyte

- -

Chapter 2

Figure 2.1: General Schematic to Illustrate a Typical Hydrothermal CQD Synthesis Process

Figure 2.2: Schematic Illustrating a Typical Protocol for MTT assay

Figure 2.3: A Typical Schematic of SDS Gel Polyacrylamide Process Cycle

- -

Chapter 3

Figure 3.1: Schematic illustration of synthesis of carbon quantum dots using *Tulsi* as precursor and their application in sensing malachite green by strong quenching of their fluorescence

Figure 3.2: Morphology and Structure of carbon quantum dots

Figure 3.3: Structural analysis of CQDs

Figure 3.4: XRD pattern of carbon quantum dots

Figure 3.5: Photoluminescence spectra of carbon dots on addition of ultrapure water ranging from 0 to 130 µl

Figure 3.6: Photoluminescence spectra of carbon dots on increasing ionic strength by addition of NaCl (333 µN-4.67 mN)

Figure 3.7: Spectroscopic Analysis

Figure 3.8: Antioxidant Assay

Figure 3.9: Antibacterial and Antifungal Assays

Figure 3.10: Emission spectra of Malachite Green at Ex₃₂₀ with increasing concentration

Figure 3.11: Toxicity Sensing of malachite green through quenching of photoluminescence of carbon quantum dots

Figure 3.12: Optimized geometries of malachite green and carbon quantum dots to computationally observe their interactions

Figure 3.13: Analysis of Real Samples for Practical Toxicity Sensing in Aquaculture and Model Green Leaves

Figure 3.14: Calorimetric Sensor Design

- -

Chapter 4

Figure 4.1: Schematic illustration of the effect of synthesis route for *Arjuna terminalia*-derived carbon quantum dots on the mechanistic formation of gold nanoparticles

Figure 4.2: Characterization of CQDs

Figure 4.3: TEM images showing uniform distribution of CQDs (E160, E200, W160, W200), SAED patterns indicate amorphous nature

Figure 4.4: Excitation-dependent photoluminescence spectra of CQDs (E160, E200, W160, W200) ; excitation wavelength given in nm

Figure 4.5: Fluorescence emission lifetime of CQDs (E200, W200)

Figure 4.6: CQD concentration- dependent Synthesis of Gold Nanoparticles

Figure 4.7: Synthesis of Gold nanoparticles

Figure 4.8: UV-Vis absorbance spectra of AuNP-ECQD160 showing time-dependent SPR peak from the start of AuNP synthesis reaction

Figure 4.9: UV-Vis absorbance spectra of AuNP-ECQD200 showing time-dependent SPR peak from the start of AuNP synthesis reaction

Figure 4.10: UV-Vis absorbance spectra of AuNP-WCQD160 showing timedependent SPR peak from the start of AuNP synthesis reaction

Figure 4.11: UV-Vis absorbance spectra of AuNP-WCQD200 showing timedependent SPR peak from the start of AuNP synthesis reaction

Fig 4.12: TEM images of AuNPs under different conditions

Figure 4.13: TEM diameters of WCQD-AuNP samples

Figure 4.14: TEM diameters of ECQD-AuNP samples

Figure 4.15: Formation of nanoflowers from small subunits of spherical AuNPs

Figure 4.16: Schematic mechanism for detailed explanation of the synthesis and growth of AuNPs regulated by CQDs

Figure 4.17: Characterization of AuNPs

Figure 4.18: XRD pattern of AuNPs showing sharp crystalline Bragg's peaks at 38.1, 44.5, 64.5 and 77.7 2θ values

Figure 4.19: A) Hydrodynamic radii and B) zeta potential values of AuNP samples

Figure 4.20: The most stable AU-CQD structure with the bond length (angstrom) is demonstrated having an -O- group

Figure 4.21: MTT Assay showing high biocompatibility of AuNPs

Figure 4.22: Role of Collagen as stabilizer for WCQDs

Figure 4.23: Snowing by β-Mercaptoethanol

Figure 4.24: Sedimented β-mercaptoethanol-AuNP self-assembled aggregates at the base of cuvette

- -

Chapter 5

Figure 5.1: Schematic Illustrating the Bioimaging Studies Conducted on various plant (*Allium cepa, Vigna radiata*) and animal model systems (MG-63 osteoblast cell line, golden hamster) for investigating the toxicological effects of malachite green using sandalwood-derived carbon quantum dots as fluorescence probes

Figure 5.2: Morphological Characterisation of CQDs

Figure 5.3: Optical and Structural Characterisation of CQDs

Figure 5.4: Testing Real Samples for the Presence of Malachite Green

Figure 5.5: (A-B) Growth of mung beans (*Vigna radiata*) in the presence of different concentrations of MG (0-1 mM MG). (C) Fluorescence from CQDs under UV illumination at λ = 365 nm)

Figure 5.6: Growth experiment demonstrating LC_{LO}, the lowest lethal concentration at which seeds are unable to sprout and show no signs of germination

Figure 5.7: Mung bean (*Vigna radiata*) seeds grown in pure 100% sandalwood CQD solution (0.33 μ g/ml) showing no effect on growth as compared to control plants

Figure 5.8: Physical Parameters Affected by Malachite Green

Figure 5.9: Bioimaging of mung bean (*Vigna radiata*) plant sections

Figure 5.10: (A) Biocompatibility of CQDs in MG-63 cell line (B) Confocal imaging of cellular uptake analysis of CQD in MG-63 cells (C) Florescence imaging of organ tissues from animals administered CQD which reached the tissues via circulation

Figure 5.11: MG-63 cell proliferation in 3 doses of sandalwood-derived CODs $(0, 0)$ 0.17, 0.33 µg/ml) clearly demonstrating fluorescence enhancement with increase in concentration

Figure 5.12: (A) Cell viability assay to analyse cellular toxicity caused by malachite green only (B) Confocal imaging of DAPI-stained control and MG-exposed MG-63 cells to prove MG causes nuclear blebbing in cells as compared to non-cytotoxic CQD-exposed cells (C) Confocal imaging of 4.5 uM MG exposed cells after DAPI+CQD staining showing apoptosis and cell distortion

Figure 5.13: Biochemical analysis of ROS (A), SOD (B) and LPO (C) to show MGinduced free radical formation in animal serum. HE staining and CQD-Assisted fluorescence microscopic analysis to observe histological morphometric changes caused by MG in (D) testes (E) and adrenal gland tissues by externally applied and internally administered CQDs

Figure 5.14: Morphological analysis of HE stained spleen and liver showing the histopathological changes between control and malachite green treated golden hamster after both 7 and 14 days of treatment.

- -

Chapter 6

Figure 6.1: The Electrostatic Interactions between Proteins and Go

Figure 6.2: Interaction of Graphene Oxide with Charged Amino Acids

Figure 6.3: Interaction of Graphene Oxide with Amino Acids

Figure 6.4: Interaction of GO with peptides for conjugate formation

Figure 6.5: Investigation of GO-protein conjugates using BSA and lysozyme

Figure 6.6: Zeta potential and circular dichroism studies of proteins

Figure 6.7: Circular Dichroism Spectra Studies for Understanding BSA-GO conjugate formation

Figure 6.8: Proteolytic Resistance of Protein-GO Conjugates

- -

Chapter 7

Figure 7.1: Synthesis of Blue-Green CQDs using marigold (*Tagetes*) cultivars

Figure 7.2: CQDs Synthesized by employing variants in the hydrothermal reaction: Colour of marigold flower petal, solvent, hydrothermal temperature, addition of NaoH/HCl

Figure 7.3: Four CQD samples selected with highest quantum yield

Figure 7.4: PL spectra of the four CQD samples

Figure 7.5: Characterisation of CQDs

Figure 7.6: Optical Assessment of MG with CQDs and DNA secondary structure G quadruplex

Figure 7.7: Detection of Food Adulterant Dyes Using a Single Facile Device