
Preface

This thesis is devoted to design and analysis of robust domain decomposition methods

for certain classes of singularly perturbed parabolic problems. The solution of these

problems exhibits boundary layers, that is, narrow regions where solution and its

derivatives change rapidly. Due to this reason, standard numerical methods are not

adequate for solving these problems. So, special approaches are needed to obtain

good numerical approximations. This has led to the development of the so called

parameter-robust or uniformly convergent numerical methods.

We first consider a class of singularly perturbed parabolic reaction-diffusion prob-

lems with time delay. We establish a maximum principle and derive a priori bounds

on the solution and its derivatives. We treat directly the parabolic problem and de-

compose the original computational domain into three overlapping subdomains. We

place a uniform mesh in both time and spatial directions and consider the backward

Euler scheme in time direction and central differencing in spatial direction on each

subdomain. We analyze the method with the help of some auxiliary problems and a

new discrete maximum principle that we establish. We prove that the method yields

uniformly convergent numerical approximations of almost second order in space and

first order in time. More notably, we prove that the desired accuracy is achieved in

only one iteration when perturbation parameter is small.

We next consider a class singularly perturbed semilinear parabolic reaction-

diffusion problems. We directly treat the time dependent problem and developed

a domain decomposition method. The error analysis is given based on the auxiliary

problems and linearised version of the discrete operator. We prove that the method

is uniformly convergent and that the method converges much faster for small values

of perturbation parameter.

The next class of problem considered is a class of coupled systems of singularly

perturbed parabolic reaction-diffusion problems with distinct small positive param-

eters. The solution exhibits overlapping layers of different widths which makes the

construction of robust numerical methods and their analysis quite difficult. The

method splits the original domain into five overlapping subdomains. On each sub-

domain we discretize the problem using a finite difference scheme comprising of the

backward Euler scheme on a uniform mesh in time direction and central differencing

on a uniform mesh in spatial direction. We provide convergence analysis based on

some auxiliary problems and using suitable barrier functions. The numerical approx-

imations generated by the method are proved to be almost second order convergent



in space and first order in time, independently of the perturbation parameters.

We then turn our attention to a class of coupled systems of singularly perturbed

parabolic reaction-diffusion problems with time delay. We establish continuous max-

imum principle and drive a priori bounds on the solution and its derivatives. We also

provide a decomposition of the solution into regular and layer parts. We designed a

domain decomposition method by extending our ideas as above. The approximations

generated by the method are proved to be almost second order accurate in space and

first order accurate in time.

At the end we again consider a class of coupled systems of singularly perturbed

parabolic reaction-diffusion problems. We introduce an improved domain decom-

position method, which is based on the decomposition of the problem domain into

three overlapping subdomains: two finely meshed layer subdomains and one coarsely

meshed regular subdomain. In spatial direction we consider a non-uniform mesh in

the layer subdomains and a uniform mesh in the regular subdomain. In time direction

we consider a uniform mesh on each subdomain. We discretize the problem on each

subdomain by using the backward Euler scheme in time direction and central differ-

encing in spatial direction. We prove that the numerical approximations generated

from the method are robust with respect to the perturbation parameters. Moreover,

we demonstrate the benefits of the method in terms of number of iterations required

to get the desired accuracy.

Numerical results are presented on some standard test examples to validate the

theoretical error bounds and to demonstrate the effectiveness of the developed meth-

ods.


