An improved robust domain decomposition method
for singularly perturbed parabolic reaction-diffusion

systems

In this chapter, we consider the following problem

{ Lu:=0u—EPu+Au=Ff, (x,t)€Q:=Qx(0,T] = (0,1) x (0, 7],

’U,(O,t) = gO(t)’ ’u’(lvt) = gl(t)’t € (OvT]> ’U,(Z',O) = QO(ZE),$ € ﬁa
(6.0.1)

where u = (u1,us)”, E = diag(e),e = (e1,e2) and 0 < &; < g9 < 1. The entries of

the coupling matrix A = (a;;(z,t)) are assumed to satisfy
2
a;j(x,t) <0, i#7  au(x,t) >0, Zaij(x,t) >a>0, i=1,2
j=1

Moreover, we assume that data f = (fl»fQ)T, 9o = (9017902)T791 = (911a912)T790 =

(@1’ SOQ)T
conditions holds so that problem (6.0.1) exhibits a unique solution u € C**(Q)?,

of. [29,[72).

This problem is considered in Chapter 4, where we have designed a robust domain

and the coupling matrix A are sufficiently regular and that compatibility

decomposition method of SWR type based on decomposing the original computa-
tional domain into five overlapping subdomains. In this chapter, we propose an im-
proved method which splits the problem domain into three overlapping subdomains
instead of splitting into five overlapping subdomains. Introducing a non uniform
mesh on boundary layer subdomains and uniform mesh on a regular subdomain, we
consider the central difference approximation to discretize in space. On each subdo-
main, the discretization in time is based on the backward Euler approximation with
a uniform mesh. Introducing some auxiliary problems and splitting the iteration er-

ror from the discretization error, the convergence is proven to be independent of the
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perturbation parameters. More precisely, the method is shown to be almost second
order convergent in space and first order convergent in time. Finally, some numerical

results are given in support of the theory.

6.1 Domain decomposition method

For accelerating the convergence of the iterative process, motivated by the idea in
Chapters 2| and 3| we divide the domain @) into three subdomains @), = €2, x (0,77,
p="{,c,r, where Qp = (0,27), Q. = (19,1 — 1), Q. = (1 — 27, 1) with

.1 €
ngmln{z, 21/52 lnN}. (6.1.1)

As we know that the both components of the solution have boundary layers of width
O(y/22In(1/e9)) and the component u; also has sublayers of width O(,/e11n(1/¢)),
so to resolve them on left and right subdomains @),,p = ¢,r, we consider a non-
uniform mesh in space and a uniform mesh in time, whereas on (. (where the

solution behaves smoothly) we consider a uniform mesh in both space and time. On

Q) we define the mesh ﬁév = {x;}}’, where

T, i=0,..., 4,
ri=q n+a(i—-)(n-n), i=%+1,.... 5, (6.1.2)
TQ‘I’N(Z—%)TQ, i=%5+1,...,N,
where
n :min{%, 2 %mN}. (6.1.3)
On ©, we define the mesh Q{V = {z;}}’, where
(1—2m) + Zim, i=0,..., 5,
=4 (1-m)+ 50— Pe-—n), i=F+1...°F, (6.1.4)
(1—7)+ @ — 27, i=3 41, N

On ., we define the mesh
QY = {w| 2y = +ihe, i=0,...,N, h,=(1—27)/N}

We divide the interval [0,7] into M subintervals of equal length At¢ and introduce
uniform mesh w™ = {t;| t; = jAt, j =0,...,M, At = T/M}. We define Q]]UV =
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ﬁ;v N, and w™ =w" N (0,7]. On each subdomain Q;V’M, p =L, c,r we define the
discretization

(£, Uiy = i (6.1.5)

where

ENM T [0:Urplig — €1[03Up)i5 + arijUspiig + a12i,iUzpsig (6.1.6)
8 [0:Usp)i — €2003Uap)ij + G210, 5U1 g + 022565V i

with
2 Upiiii— U oo Uy oo — U, ooy
52Un i — TL,p,’LJr 2] n,p;t,J _ n,pit,J n,p;it 5] f — 1 2’
02Ul hi + hit ( hita h; TS
and

[0:Unplij = (Unpij — Unpij—1)/At, forn =1,2.

After the discretization on each subdomain, we define the iterative process as follows.

Step 1. Initial Approximation: we take the initial approximation as follows

(

0, O0<mz;<1,0<t; <T,

u(z;,0), for z; € Q,
’U,(O,tj), for tj S CL)M

u(l,t;), for t; € wM

\

Step 2. For each k > 1, we find the k** approximation U g“], p = {,c,r, by solving

following problems

( ey Mo, = fij for (z;,t;) € Q)M
ng}(xi, 0) = p(z;) for x; € ﬁév,
ULN0,t) = golt;), UM 2, t;) = T, UF(2m, ;) for t; € wM

; for (z;,t;) € QNM,
U (z;,0) = () for z; € Qr ,
i)

UP(1 —2m,t) = T, UF (1 = 27, 1)), UP(1,t)) = g (¢;), fort; € wM
[ (£XM Ul = fij for (w;,t;) € QMM,
UM (2;,0) = () for z; € Q.

L Uk}(7'2a t;) = TU (7'2: ),U[](l—Tz tj) = TU[](l—TQ, t;), for t; € wM

where T, U k] is used to denote the piecewise linear interpolant of the k' iterate
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UM at time level ¢; on Q= (ﬁév\ﬁc) U ﬁiv U (ﬁiv\ﬁc)

Step 3. To compute the solution of problem (6.0.1)) in the original domain, we merge

the solutions obtained in Step 2 in the following way
—N,M , —
UM (rty) = UB(@t), (@it) e @ (6.1.8)

Step 4. Termination: The iterative process is terminated if condition
UH — UE | gvae < tol (6.1.9)

is true, otherwise repeat Step 2 and continue the iterative process until the desired

accuracy is not obtained.
It is easy to prove that for each p = ¢, ¢, r, the operator .,E;V M satisfies the
following discrete maximum principle.

Lemma 6.1.1. Suppose the mesh function U,,p = {,c,r, satisfies U,;o > 0 for
T € ﬁ;v and Upo; > 0 and Uy, > 0 for t; € wM. Then [£°MU,]; > 0 for
(wi,t;) € QéV’M, implies U, ; > 0 for (z;,t;) € @g’M.

6.2 Error analysis

In this section we provide error analysis of the proposed method, where the following

bounds will be used.
Lemma 6.2.1. The solution u of satisfies
10fuillg < C,  for €=0,1,2, i=1,2.
[0y < CL+27), [Bllg < CA+es™), s=0,....4,
’621]1‘ < 0{551 + 5;1851 (iL’)},

|U)1(Z)3,t)| < 0852(x>7 |w2(x)| < 0662(1‘)7

05w, (2,1)| < Cler By (2) + 5By (2)),  |02ws(a,t)] < Cey**B.,(x), s =1,2,
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Oswn (2, 8)] < Cle; "B,y (x) + 5, B, (x)), s =34,
O3wa(x, 1)| < Cey (677228, () + 6, B, (x), s =34,
for (z,t) € Q and B.,(z) = exp(—z+/a/e;) + exp(—(1 — 2)\/a/e;), v € Qi =1,2.
Proof. See [29,78)]. O

Lemma 6.2.2. Suppose that €; < €5 and g5 < /2. Then w = (wy,ws)" is decom-

posed as follows

w1 = ﬁ;1761 + @17627 Wg = @2,61 + 1/1}2’52, (621)
Wy = Wi, + Wi ey, Wy = Wa e, + Wy,
where
|{U\1,61 (J?)‘ < B€1 (LL’), ‘83@1761 (I,t)l < 8;1851 (I), ‘aiw\l,Ez(x’t)l < 8272862 (I),
(6.2.3)

|@2,81 (l‘7t)| < 681 (%), |8§{U\2,€1 (x7t)| < 52_1861 (I)’ |a§@2,82 (:L“, t)| < 82_2852(1‘),
(6.2.4)

and

|7:617€1 (SC)| < Bffl(x?t)? \85@1,51 (:L’,t)l < 8171681 <x>7 |83w1 52(:(; t)’ < €9 3/2862(1;)7

(6.2.5)
|ﬂ)/2,51 (ZE, t)| < 651 ("L‘)7 |8g{52,61 (l‘,t)l < 82_1[581( ) |a3w2 €2 (JZ t)| < €9 3/2882 (l’),
(6.2.6)
for all (z,t) € Q.
Proof. This lemma can be proved using arguments in [29] O

Next we define the auxiliary mesh functions ﬁp, p =L, m,r, satisfying

([£YMT ) = fo, for (2:,t;) € QY
To(2:,0) = u(zy,0) for ; € Q,
\ U,(0, t;) = u(0,¢;), U279, i) =u(2m,t;) fort; € wM

( [£NMU] fij for (xw ) QNM
U, (2;,0) = u(z;,0) for z; € QT ,

\ U, (1-2m,t) = u(l —2n,t;), U, (1,t;) = u(l,t;), fort; €wM
[‘EéV,Mﬁc]i,j =fi; for (z;,t;) € QNVM,
U.(r;,0) = u(x;,0) for z; € ﬁiv,

UC(Tg,tj) = ’U;(Tz,tj),ﬁc<1 — TQ,tj) = ’U,<1 — TQ,tj>7 for tj < LUM



An improved robust domain decomposition method for singularly perturbed
92 parabolic reaction-diffusion systems

where £)°M p=(, ¢, r, are as defined in Section , and w is the exact solution of

(6.0.1)). Also we define
— —NM | =
Uizi ty), (zi,ty) € Q" \ Qe
Uz, t;) = Uolaity), (i.t) € Qo™ (6.2.7)
— =NM | =
UT(ZL'i,tj), (in,tj) < QT \Qc

We now apply a triangle inequality to split the error into two parts, the discretization

error and the iteration error, as follows
lu — UM[gxa < |Ju = Tllgva + ([T = UM gvar. (6.2.8)
The following lemma presents a bound for the discretization error |ju — U| |6N,M.

Lemma 6.2.3. Let u be the solution of problem and U is as described in

. Then
||u — UH@N,M < C(At + N 2In? N) (6.2.9)

Proof. For simplicity we consider 7 = (2y/3InN)/y/a and 71 = (2\/e61In N)//«,
that is ; and &9 are small and of different magnitude. This is the most interesting
case of problem , as overlapping layers occur in this case.

We split the truncation error using the solution decomposition u,, = v,, +w,. We

get
[fé\;’LM(u —ﬁg)]m' = [(5tun — (9tun]i,j +éen [83%’011 — (5‘,%1)”]1',]' +éen [8§wn — (ﬁwn]m (6210)

By Taylor expansion and Lemma for the first term on the right-hand side, we
get
|[6tn — Opun)ij| < CAL|0Fwn (i, )|t < CAL (6.2.11)

For the second term on the right-hand side, by Taylor expansions we get

2 (hiy1 + hi)||3i’vn||§ y T = Ti, T,
enl[020 — 620a)is] <4 ‘ (6.2.12)

2h?l|0zvnllg,, otherwise.

Since hiy 1+ h; < CN~!and h? < CN~2, we have

-1 _
O\/ 8n]V y Xy = T1,T2,

CN~2, otherwise.

51@”@3”% - 6g2cvn]i,j| <
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We use argument in [78, Theorem 1] to get the sharp estimate at z; = 7 as follows
£
e1|[0201 — Sov1iy] < gl(hm + ho)| |83 I,

< CeyN7Y(ey'? + &?B.,(2))
< 0615;1/2]\[’1,

as one can prove that 51_1/2851@) < 252_1/2 exp(—zy/a/ey) < 252_1/2 for \/ea/a <
r <1/2 and 2,/&; < \/ea.

For the third term on the right-hand side, we consider the following four cases:

Case I: For z; € (0,71), we use h; < C\/efN~'In N and Lemmam to get
En|[02w, — 5§wn]i,j\ < CanthﬁiwnH@ < CN72In®N.

Case II: For z; € (11, 72), we use the decomposition w,, = W, ¢, + Wy ¢, to get

5n|[a§wn - (ﬁwn]i,j’ < 5n‘[a§@n,€1 - 55@7%61]%}]" + €n][8§@n,52 - 5920@n,€2]i,j’-

Using Lemma, and mesh width h; < C\/e2N"'In N, we get

enl[Ozwn — G walis] < Cen(l|OzWne, (- t) liwior i) + Ai 110z Wnes (- 6) s i)
< CB.,(r)+CN?In* N
<CN?+CN?In*N
< CN?In* N.
Case III: For z; € [r2,27), we use Lemma to get
enl[03wn — G walis] < nllOwn s t) oy wia] < CllBeslliwios sl

Now w; € [12,27,), implies that ||B., ||, 12,1 = Beo(2i—1) and ;1 > 7 — 475/N.

Hence

Bgz(xi—l) S 26(—72-&-47'2/1\7)\/&/62 — 26—7'2\/04/626(47'2/]\7)\/05/82
— 9 2N SN"'InN -~ -2

Case IV: For x; = 71 we use the decomposition similar to Case II and proceed as

follows

e|[02wy — Oowy]ij| < e1|[03Wr e, — 82Wr ey )ig] + €1|[05W e, — 621, )1 5]
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< C‘El ||a£{171,61 ('7 tj) H [@i—1,@i41) +C€1 <h1+h1+1> ||8:i{171,€2 (‘7 tj) || [@i—1,%i41]

(7'1 + 7'2)

< CON24(Cg (5" B,

[90171,96#1])

exp(—7v/a/es)

VEr Jerln N
< ON™2 L Ve “2\/z1/esIn N
<C +C\/5N 75 exp( e1/eaIn N)

< ON7?+Ce%e; PN,

_ 611I1N
<CN?2%4+C
= + N

Similarly we can obtain
62|[8§w2 — 5§w2]i7j| S CN_2 + 061_1/25;/2]\[_1.

Collecting the above bounds, we get the following inequality

(

At—I—N’ZlnzN, .Ti?éTl,TQ,tjewM,n:12

=

At 462, PNV 4 N2, oy =7t ewM n =1,

£ (u =Tl <CS At e PePNT 4 N2y = 7t € oMo =2,

At—l-él&';l/zN_l—l—N_Q, xi:TQ,tj E@M,n: 1,

At—f—S;/ZNil—f—Niz, {L‘i:TQ,t]‘ G@M7TL:2
(6.2.13)

Now using the idea of [78] we define the barrier function
g :=CAH1, )T + CN?2In®> N(1 + ¢., + é.,)(1,1)T
where ¢, and ¢., are as follows

2 (z,t) €[0,m] x [0,T],
b (0.1) = (6.2.14)
1, (z,t) € [m,2m] x [0,T],

and
%, (x,t) € [0, 12| x [0,7T],
Pey (2, ) = (6.2.15)
1, (z,t) € [12,2m] x [0,T].

Notice the fact that

alN

—— ifr, =7
9 8 /E1e2 In* N v )
- [6x¢51]i7j >

0 otherwise.
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and
JaN e
ifax, =m
Ves In N ? )
— 620, )ij >
0 otherwise.

Thus, use (6.2.13)) and choose C' (in g) sufficiently large, independent of &; and &5,
such that

][oeg;lM(u ~ Uiyl < [£5 gy for i=1,.... N—1;5=1,....,M;n=1,2

4n

and
[(w =Tyl < lglij for (u,t;) € aQ) ",

where 8@2“/1 = (ﬁév x {0}) U ({0,275} x wM). Hence, by the discrete maximum
principle we get
||u — EH@V,M < O(At+ N721n* N). (6.2.16)

Similarly, we can prove that
lu— U, ||gvar < C(At + N72In” N). (6.2.17)

The bound on |[(w — U.)(zi,t;)], (zi,t;) € QNM can be easily established using
Taylor expansions and ((6.2.10). We get

[fgﬁM(u - ﬁC)]i,j < C(At+ 5nhg||8;lvn(-vtj)| wi—1,@i] T 5n||a§wn<'vtj)| i 1,2:])
< C(At+ N7?). (6.2.18)
Hence, using the discrete maximum principle we get
|u — ﬁcH@N,M < C(At+ N72). (6.2.19)
Then, combining the bounds given in ((6.2.16)), (6.2.17)) and (6.2.19)) on @;V’M, p =
l,c,r, we get the required result. [

The following lemma presents a bound for the iteration error term on the right-hand

side of (6.2.8)).

Lemma 6.2.4. Let U™ be the k'™ approzimation to the exact solution of problem

and let U be as described in (m Then

1T = UWY||gvar < C27% 4 C(AL+ N2 In® N). (6.2.20)
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Proof. First, we introduce some notation
0" = max{||(U, — T, UM ) (270, t))||ow: [|(T ) = T, U ) (1 = 270, 1;) oo}

Orr, = max {||(Ue = To, Ue) (272, ;)| oo, 1T = T, Ue) (1 — 272, 5) ||

Or, = max {|[(TUe — Ue)(r2, t))|oc, [[(Te = T)(1 = 72, 1) [ } -

Now define
¥ (i) = 5 0 £ (T, = U ) (wisty),
where U, — U Lﬂ satisfies
£ (T, - UMl =0 for (x;,t;) € Q"
(U, - U%l])(xi, 0)=0 for x; € ﬁév,

(T, — UM0,t;) =0,|(T, — UM 2n, t,)| < 6M1 for t; € wM

We now use Lemma [6.1.1] to get

_ Z; —N,M
(Te— Ui t))| < 601 for (0,1)) € Q

T2
Hence
1 gt
1T, — Ug ||—N Mg, < - a8 T < 7. (6.2.21)
Similarly, we have
gl
T, — U[”||QNM 2. <5 (6.2.22)

Next
[(£XM(T,— UMy =0 for (2;,t5) € QN

(T, — Ug”)(xi,O) —0 forz; €.

M

As (1, t;) € @év and (1 —m,t;) € Q , we have

(T = UM (7,1)| = (T = T, U (72, 1)

<|(U.~ U)o, ty)| + (T — UMY (mo, 1))

gl "
<6,1+ 71, fort; cw

and

(U= UL = 7,t)| = |(Ue = T, U (L = 7, 15)]
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<|(Ue=U)A =7ty + (T, = U1 = 7,1)|

o] "
§07-2]_+71, fortjew y

Then, using the discrete maximum principle of Lemma [6.1.1] it holds

S ] pl
U - U, ||@i\’vM <0+ 9

Thus, using (6.2.21)), (6.2.22) and (6.2.23]), we have

— ] g1l
||U - U ||§N,]\4 < 97-2 + 7

(6.2.23)

(6.2.24)

Next, for bounding ||U — U[2}||@N,M we have to obtain a bound for I, Using a

triangle inequality and stability of operator T;,, we have

(e =T, UY)(2r0,1)] < [(Ue = T, Ue) 27, 5)| + | T, (U = UM) (27, 8;)

gl
< 65,1 4+6,1+ 71, for t; € w™,

and

(T =T, U (12 15)] < (T =T, T (1= 2 15) [T, (T U (1~

gl
<ol 40,1+ -1, fort; € w.

Hence
plt]
9[2] S 927’2 + 97’2 + 7

So, we have
7 1 2 i
max{||U— U[]H@N,M,Q[]}S?‘i‘ﬂ, ,u:0272+072.
Then, repeating the above procedure for further iterations, we have
77 k k41 o
maX{||U — U[ ]||@N,M,9[ + ]} < 7 + u.
Simplifying the above inequality we get 8¢ < 2=(¢:=Dglll 4 2/, Hence

||ﬁ — U[k]H@N,IM < 2"“9[1] =+ 2,&.

27—27 t])'

(6.2.25)

Note that 911} < C. Also, from Lemma |6.2.3, 6,, < C(At + N721n* N), as (7, 1;) €
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@év’M and (1 —m,t;) € @,{VM Next we obtain a bound on #y,,. For bounding 6y,

use a triangle inequality to get
(Te— T, U.) (27, t5)| = [(w — T, Uo) (22, 1)

< |(u = Ty u)(2m, 1) + [T, (w — Uc) (27, )|

By stability of 7;, and Lemma [6.2.3 we have

7,

J

(u—TU.) (2m,t;)| < C(At+ N2 In*N), t; € w™.

To bound the interpolation error we use solution decomposition v = v+ w of Lemma

[6.2.1] to get
(v = Toyu) (272, £5)] < |(v = Ty 0) (272, 4)] + |(w — Ty, w) (272, 1)

< Ch||07v (., ;)|

[2i@ir1] T Cllw(., ;)]

[zs,2i41]
< CN? t; € w.
Similarly
(u— T, U.)(1—2m,t)| < C(At+ N?In* N), t; € w™.
Hence
f9r, < C(At + N72In* N).

Combine the bounds for 6,, and 6s,, to get i < C(At 4+ N~21In* N). This proves the

lemma. O]

We finally use Lemma and Lemma together with inequality (6.2.8]), to

prove the following main result of this chapter.

Theorem 6.2.5. Let U be the k™ approzimation to the exact solution of problem
0.0.1). Then
lu— UY|[gva < CQR7F+ At + N2 In® N). (6.2.26)

6.3 Numerical results

To validate the theoretical error bound in the previous section, we now present the

numerical results for two test problems.
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Example 6.3.1. Consider the following coupled system of singularly perturbed
problems

Ou— EQ*u+ Au=7f inQ:=(0,1) x (0,1],
u(z,0) =0 in [0, 1], (6.3.1)
w(0,t) = 0,u(1,t) =0 in (0,1],

where
A 2(1+ xz)? — (1 +2?) o cos(rz/2)
—2cos(mw/4) 2.2¢l7® ’ T
The exact solution of this problem is not known. Choosing tol = N2, we

denote the final computed solution by U™?*. We now use double mesh differ-
ences to estimate errors for different value of €, N and At by ENA! = || AL
PN AL 4||©N,M, n = 1,2, where U?MA%% denotes componentwise approximate solu-
tion computed using 2N spatial mesh intervals and time step At/4 in each subdo-

main.
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Figure 6.1: Numerical solution for e; = 107°,e9 = 10™* with N = 32, M = 64 in
Example [6.3.1 The first and second components are depicted in the left and right
figures, respectively.

Fixing ¢, by taking ¢; = 107", for some non-negative integer n, we compute

N,At __ N,A N,At N,At
En €1 maX{E 51,1)’ En,(51,10—1)7 T 7En,(51,10—n)}'

We now compute the uniform error as EY'! = max Eflveft and the rates of conver-
€1
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Table 6.1: Errors E,]lv g?t and EfLV ’At, and convergence rates ,0,]1\{ Z;?t and pfy A for Example
B-3-1
N=2 N =26 N =27 N =28 N =2
€1 At =1/4 At =1/42 At =1/43 A=1/4* At =1/4°
2.184e-02 7.624e-03 2.155e-03 5.565e-04 1.403e-04
101 1.519 1.823 1.953 1.988
1.795e-02 6.017e-03 1.645e-03 4.224e-04 1.064e-04
1.577 1.872 1.961 1.990
2.620e-02 8.537e-03 2.318e-03 5.923e-04 1.489e-04
10—2 1.618 1.881 1.969 1.992
2.405e-02 7.499¢-03 2.010e-03 5.121e-04 1.287e-04
1.681 1.899 1.973 1.993
2.902e-02 9.030e-03 2.423e-03 6.174e-04 1.551e-04
1073 1.684 1.898 1.973 1.993
2.721e-02 8.390e-03 2.241e-03 5.703e-04 1.432e-04
1.698 1.905 1.974 1.994
3.067e-02 1.071e-02 3.190e-03 9.070e-04 2.539¢-04
1074 1.518 1.747 1.814 1.837
2.789e-02 8.613e-03 2.343e-03 6.141e-04 1.595e-04
1.695 1.878 1.932 1.945
3.074e-02 1.070e-02 3.187e-03 9.062e-04 2.545e-04
1075 1.522 1.748 1.814 1.832
2.810e-02 8.662¢e-03 2.354e-03 6.160e-04 1.600e-04
1.698 1.880 1.934 1.945
3.076e-02 1.070e-02 3.186e-03 9.060e-04 2.545e-04
1076 1.523 1.748 1.814 1.832
2.816e-02 8.678e-03 2.357e-03 6.167e-04 1.601e-04
1.698 1.880 1.935 1.945
3.076e-02 1.070e-02 3.186e-03 9.059e-04 2.544e-04
10~ 1.524 1.748 1.814 1.832
2.818e-02 9.236e-03 2.467e-03 6.234e-04 1.602e-04
1.609 1.904 1.985 1.961
3.077e-02 1.070e-02 3.186e-03 9.059¢-04 2.544e-04
1078 1.524 1.748 1.814 1.832
2.880e-02 9.679e-03 2.694e-03 7.263e-04 1.925e-04
1.573 1.845 1.891 1.916
EYAT 3.077e-02 1.071e-02 3.190e-03 9.070e-04 2.545¢-04
iV’At 1.523 1.747 1.814 1.833
EéV’At 2.880e-02 9.679¢e-03 2.694e-03 7.263e-04 1.925e-04
ph At 1.573 1.845 1.891 1.916
N,At t
gence by prit = logy (%) : pr 2t = log, (%) :

Table |6.1]shows the componentwise maximum errors when £; = 107" is fixed and
g9 belongs to the set S = {eo =107 : m =0, 1,...,n}, with the corresponding con-

vergence rates, and the componentwise uniform errors with corresponding uniform
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Table 6.2: Tteration counts k; (k2) for the proposed method (for the method given in
Chapter 4)) taking fixed ¢; = 10~® for Example m
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convergence rates. For each value of €1, the 1** and 2" rows represent the results
corresponding to the first component, and the 3" and 4" ones correspond to the sec-
ond component. Table[6.1] also indicates that the numerical results are in agreement
with the theoretical result in Theorem [6.2.5] In Table [6.2] we give iteration counts
for the proposed method and also in round brackets iteration counts for the method
developed in Chapter 4. From this table, we see that a less number of iterations are
required to reach convergence for the proposed method than those required for the

method developed in Chapter 4.

Example 6.3.2. Consider the following coupled system of singularly perturbed
problems [35]

{ du— ERu+ Au=f inQ:=(0,1) x (0,1], (63.2)

u(z,0) =0 in[0,1], w(0,t) = gy(t), w(l,t) = g,(t) in (0,1],

_ 2 —1 [ filz,0)
A‘(—l ) ) f‘(fzw)’

where f1, f2, g, and g, are taken in order that

where

ui(z,t) = t(p1(z) + @o(x) — 2) + (¢t + at)e™,

up(x,t) = e1(1 — e ") (pr(x) — 1) + (t — %) (pa(z) — 1),

with VG o o-(-a)/
6—:(: ors +6_ —T ors )
o) =— 7m0 =L

is the exact solution.
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N,A N,A N,A N,A
Table 6.3: Errors Ey 2  and E° t, and convergence rates pnjglt and pp’ t for Example

6-3-3
N =2 N =26 N =2 N =28 N =2

€1 At =1/4 At =1/42 At =1/43 A=1/4* At =1/4°
6.206e-02 1.766e-02 4.590e-03 1.159¢-03 2.906e-04

10! 1.813 1.944 1.985 1.996
3.404¢-02 8.475¢-03 2.108¢-03 5.262e-04 1.315¢-04

2.006 2.007 2.002 2.001
7.733¢-02 2.210e-02 5.722¢-03 1.444¢-03 3.618¢-04

1072 1.807 1.949 1.987 2.000
8.324¢-02 2.130e-02 5.350e-03 1.339¢-03 3.348¢-04

1.967 1.993 1.998 2.000
8.297¢-02 2.375e-02 6.144¢-03 1.550e-03 3.884¢-04

1073 1.804 1.951 1.987 1.997
8.969¢-02 2.308e-02 5.808e-03 1.454-03 3.637e-04

1.958 1.991 1.998 1.999
8.517e-02 2.432e-02 6.279¢-03 1.582¢-03 3.959¢-04

10~ 1.808 1.954 1.989 1.998
9.202¢-02 2.373e-02 5.977¢-03 1.497¢-03 3.744e-04

1.955 1.990 1.997 1.999
8.626¢-02 2.463¢-02 6.359¢-03 1.603¢-03 4.014e-04

1075 1.808 1.953 1.988 1.997
9.286¢-02 2.398e-02 6.041e-03 1.513e-03 3.784e-04

1.953 1.989 1.997 1.999
8.709¢-02 2.479e-02 6.391e-03 1.611e-03 4.036e-04

106 1.813 1.956 1.988 1.997
9.312¢-02 2.407¢-02 6.064¢-03 1.519¢-03 3.799¢-04

1.952 1.989 1.997 1.999
8.740e-02 2.494¢-02 6.435¢-03 1.626¢-03 4.091e-04

1077 1.809 1.955 1.984 1.991
9.321e-02 2.410e-02 6.072¢-03 1.521e-03 3.804e-04

1.951 1.989 1.997 1.999
8.747¢-02 2.499¢-02 6.465¢-03 1.635¢-03 4.115e-04

1078 1.808 1.951 1.983 1.990
9.323¢-02 2.411e-02 6.075¢-03 1.522e-03 3.806¢-04

1.951 1.989 1.997 1.999
EYVAT 8.747e-02 2.499¢-02 6.465e-03 1.635¢-03 4.115e-04

At 1.808 1.951 1.983 1.990
ENAT9.323¢-02 2.411e-02 6.075e-03 1.522¢-03 3.806e-04

ph At 1.951 1.989 1.997 1.999

For this test problem, we compute solution error by ENA = [|u, — UY?| [

E'N,At

n,er

are computed as described for Example[6.3.1} In Table[6.3] we present the maximum

errors EY ’Eft and the uniform errors EN'A! for some values of €;, N, and At, with

For different values of 1,5, N, At, the errors EN-At and rates of convergence



Numerical results 103

M

T

“\\\““‘“\‘\‘“ ‘|‘|‘|‘“
|

\\ W
) ‘“ “‘ “‘n\‘ \\‘\“\‘ i
i \\ || || \\ \“
"l]]lH‘.‘“ ||“‘|||‘ |‘|‘|“‘||| o

1117
ll”l”l’
,t ll’l’l,”,’t[
g ’t’l" ””’"’
’ ” , l’ 11’1’

First Component ul

Figure 6.2: Numerical solution for e; = 107°,e9 = 10™* with N = 32, M = 64 in
Example [6.3.2. The first and second components are depicted in the left and right
figures, respectively.

Table 6.4: Tteration counts k; (k2) for the proposed method (for the method given in
Chapter |4 taking fixed £, = 107® for Example

gy =10" N=2° N =2° N =27 N =28 N =2°
At=1/4  At=1/42 At=1/43 A=1/4* At=1/4

n=0 4 (2) 6 (3) 7 (4) 9 (5) 11 (6)
1 3(2) 4 (3) 4 (3) 4 (4) 5 (5)

2 2 (2) 2 (3) 2 (4) 2 (5) 2 (6)

3 1(2) 1(3) 1 (4) 1(5) 1 (6)
4 1(3) 1 (4) 1 (4) 1(5) 1 (6)

5 1(3) 1(3) 1(3) 1(3) 1(3)

6 1(2) 1(2) 1(2) 1(2) 1(2)
7 1(1) 1(1) 1(1) 1(1) 1(1)

8 1(1) 1(1) 1(1) 1(1) 1(1)

the corresponding convergence rates pN A

and the uniform convergence rates p2

From this table, we can clearly see that the results are according to the error estimate
in Theorem Table gives iteration counts for the proposed method and also
in round brackets iteration counts for the method given in Chapter [l It can be
seen from Table that the proposed method is more efficient than the method
developed in Chapter [d] considering number of iterations required within the same
convergence criteria. The used CPU time in seconds for the proposed method for
Examples and is given in Table These results are computed using
MATLAB software installed on a laptop equipped with an Intel(R) Core(TM) i3-
3227U CPU with 1.90GHz speed and 8 GB RAM running on a 64 bit windows8

operating system.
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Table 6.5: The used CPU time in seconds for Examples 6.3.1] and [6.3.2 with &1 =
1078, g5 =107".

N=2° N =2° N =27 N =28
At =0.25 | At =0.25/4 | At =0.25/4% | At =0.25/43
Example [6.3.1/ | 0.315356 0.420821 1.530240 27.976567
Example [6.3.2] | 0.378820 0.754524 3.590116 35.250618

6.4 Conclusions

An improved domain decomposition method of SWR type is designed and analyzed
for solving coupled system of singularly perturbed time-dependent reaction-diffusion
problems. The method is based upon partitioning the computational domain into
three overlapping subdomains and distinguishes itself from other domain decompo-
sition methods in the usage of non-uniform meshes rather than uniform meshes in
boundary layer subdomains. In each subdomain, a combination of the central dif-
ference approximation in space and the backward Euler difference approximation in
time is used to solve subdomain problems locally. We then merge the local solutions
obtained on overlapping subdomains to get the final solution, which provides uni-
formly convergent approximation of almost second order in space and first order in

time.



