A robust domain decomposition method for
singularly perturbed parabolic reaction-diffusion

systems with time delay

We consider the following coupled system of singularly perturbed parabolic reaction-

diffusion problems with time delay

Lu(x,t) := Lu(z,t)+ Bu(z,t —7) = f(z,t) inQ:=Qx(0,7]=(0,1) x (0,7,
u(z,t) = ¢(x,t) in I', = [0, 1] x [—7, 0],
u(0,1) = vo(t), u(1,1) = 7,(t) in (0,77,

(5.0.1)
where Lu(z,t) = Qu(z,t) — EQ?u(x,t) + Au(z,t), u = (u,uz)”, E = diag(e), e =
(e1,62) and 0 < g, < ey < 1. For each (z,t) € Q, the coupling matrices A =
(a;(x,t)), B =(b;(x,t)) are assumed to satisfy

a;j(x,t) <0, i#7j and by (x,t) <0, 4,j=12, (5.0.2)

2
ai(z,t) >0, Y (ai+by)(x,t) >a>0, i=12 (5.0.3)

j=1
Moreover, we assume that data f = (f1, f2)7, 7o = (Yo1,702)" 71 = (111, 712)7, @ =
(¢1,#2)T, and the coupling matrices A, B satisfy sufficient regularity and compati-

bility conditions in order that there exists a unique solution u € C*?(Q)3?, cf. [72].

In this chapter, we extend our work in Chapters [2] and 4| to coupled systems
of singularly perturbed time delay PDEs (5.0.1)). We establish a priori bounds on
the solution and its partial derivatives. Based on a priori estimates of the solution
we decompose the problem domain into five overlapping subdomains. Introducing
a uniform mesh in both space and time, on each subdomain we consider central

difference approximation and Euler implicit approximation to discretize the model
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problem in the spatial and the time direction, respectively. We then formulate an
iterative algorithm to approximate the solution of the model problem. The analysis
of uniform convergence is conducted based on some auxiliary problems. We prove
that the method is of second order accurate in space and first order accurate in time.

Finally, numerical results are given to support our theoretical error bounds.

5.1 Derivative bounds

In order to set-up and to study convergence behavior of the method, we shall derive

some a priori bounds. We need the following maximum principle results.

Lemma 5.1.1. Suppose (x,t) > 0 for (z,t) € 'y, and ¥(0,t) > 0, ¥(1,t) > 0 for
t € (0,T). Then Lap > 0 in Q implies that 1 > 0 in Q.

Proof. See [29]. O

Lemma 5.1.2. Suppose @(z,t) > 0 for (z,t) € I'y and ¢(0,t) > 0, p(1,t) > 0 for
€ (0, 7). If £ >0 in Q then p(z,t) > 0 in Q.

Proof. Supposing ¥ = ¢ in [0, 1] x [—7, 7], we have
P(x,t) >0 for (z,t) € Iy and ¥(0,t) >0, ¥(1,t) >0 for t e (0,7].

Also
£ip(x,t) > —B(x,t)p(x,t —7) >0 for (x,t) € (0,1) x (0, 7],

as b;; < 0 and ¥ > 01in [0,1] x [—7,0]. Hence, Lemma gives ¢ =1 > 0 in
0,1] x [0, 7]. Now we can show that ¢ > 0in [0, 1] X [iT, (¢ 4+ 1)7],4 > 1, using ¢ > 0

in [0,1] x [(¢ — 1)7,¢7], and using the earlier argument. O

The following lemma proves that the first two time derivatives are bounded in-

dependent of the perturbation parameters.
Lemma 5.1.3. Suppose u is the solution of problem . Then
107 tnllg < € form =0,1,2, n=1,2. (5.1.1)

Proof. Choosing a constant barrier function the result for m = 0 can be easily
proved using the maximum principle for £. We now assume that (5.1.1]) holds for
m=20,....,.k— 1,1 < kK < 2. We need to establish result for m = k. Defining
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¥ = J;u, it holds
£U(z,t) = 0,9 (z,t) — EO*W(x,t) + AV (z,t) + BY(x,t — 1)
ongt- i () ot () it
=W, inQ=1(0,1) x (0,7,

with |¥(xz,t)| < C for (z,t) € I'y and (z,t) € {0,1} x (0,7]. Now using hypothesis
of induction, we obtain |W,(x,t)| < C. Thus, we get the required result using the

maximum principle for £ together with a constant barrier function. n

Next we write the solution of problem (5.0.1) as v = v + w, where v is the

regular part satisfying

£o(x,t) = f(x,t) for (x,t) € Q,
v(z,t) = ¢p(x,t) for (z,t) € I'y, (5.1.2)
v(z,t) = x(z,t)  for (x,t) € {0,1} x (0,T],

with x satisfying

{ Ox(z,t) + Ax(z,t) + Bx(z,t)(z,t — 1) = f(2,1), (z,t) € {0,1} x (0,77,

x(z,t) = ¢(z,1) (z,t) € Iy,
(5.1.3)
and w is the singular part satisfying
Lw(x,t)=0 for (z,t) € Q, (5.1.4)
w(z,t) = (u—v)(x,t) for (z,t) e U ({0,1} x (0,7]). o
Lemma 5.1.4. The solution v of problem satisfies
[0fval|g < C fork=0,1,2, n=1,2. (5.1.5)
[05vn]lg < CU+e72) fork=1,2,3,4, n=1,2. (5.1.6)

Proof. The proof of (5.1.5) follows using agruments similar to Lemma [5.1.3] Thus,
we only neeed to establish the bounds ([5.1.6)). Differentiating the equation in ({5.1.2))
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twice with respect to x and defining z(x,t) = 0%v(z,t), k = 2, (x,t) € @, it holds

|£z(x,t)| =

azﬂx,w—zf;&(j)Aé*’"‘”a;w t) zlo( >B<“ Volo(z,t —7)

< (14 vzln)C

(5.1.7)

Further, since the problem for x is independent of small parameters ¢; and &5,

so one can use classical arguments to prove that the derivatives of x are bounded
independent of €; and e,. Hence, we obtain |z(z,t)] < C for (x,t) € 'y and (z,t) €
{0,1} x (0, 7). Now using the maximum principle for £ with barrier function ¢ =

C(1 + [|0zv[|5)t , we obtain

8305 < C.(1+ [0.v]lp) (5.1.8)
Further, by using the argument given in [76], we get

10, 0]l < C + [|92v]|5 /2C. (5.1.9)

From (5.1.8) and (5.1.9), we have

050, |5 < C for k=1,2, n=1,2.

Iz

Next, before establishing bounds on H(?’%n for k = 3,4, n = 1,2, we need to

I
derive bounds on H@l 1vH e and H82 l'vH o For this, we differentiate the equation
in (5.1.2) twice and once, respectively, with respect to z and ¢, and define 2 =

85”,;111, K =2, to get

K

LZ(x,t) =3 f(x,1) = 31, (7)A§'ftl)’13iv($,t) -5 (Z>A(“ Vov(a,t)

_ 27:0 ( /; ) Bg:”t_l)’l(()iv(x,t —7T)— 2:01 ( ,; ) 8“'0( —7)

which implies
| £2(x,t)] < (1+ Hal 1vH

Again using the previous arguments we obtain |Z(z,t)| < C for (z,t) € {0,1} x (0,T]
and (z,t) € I'y. Now applying the maximum principle together with barrier function

¢, = Ct(1 + HallvHQ we get H821v||Q < C.(1+ ||811'vHQ Again following the
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argument from [76], we get
[0zv |5 < C + |8z v ][5 /2C. (5.1.10)

Thus, we have H@;:,}'UHQ < C and ||8§:§'vH§ <C.
Now from the n'* n = 1,2, equation of system ({5.1.7)) for x = 2, with previously
obtained bounds, we get [|03v,|l5 < cg,". So, we can apply the argument in [76] to

1/

get [|03unllg < cen ?. Hence, the proof is complete. O

Lemma 5.1.5. Suppose w is the solution of problem . Then

|0fwn||5 < CB., (), for k=0,1,2, n=1,2.

Iz
Proof. The result for k = 0 holds trivially with the barrier function ¢ = Ce?**3_,(z),
by noting that |w(z,t)] < C for (z,t) € I', and (x,t) € {0,1} x (0,T]. To apply
induction here, we suppose that lemma holds for £k =10,...,m—1,1 <m < 2. Now

we will derive bounds for £k = m. Defining g = 0w, we have

£8(z.t) == 0,8(x, 1) — EO;g(x, 1) + Ag(x,t) — Bg(x,t —7)

m— m m— m— m m—
= ( l >A§ Vo (e,t) - ( l )Bi Vo (et —7)

=g, inQ=(0,1) x (0,7T]

with |g(z,t)] < C in T, and |g(z,t)] < C for (z,t) € {0,1} x (0,T], where the
bounds on initial and boundary conditions follow from previous arguments. Using
the induction hypothesis, we get |g,,(z,t)| < £e(z,t). Hence, using the maximum

principle for £ with the barrier function ¢ we obtain the required result. O]

Lemma 5.1.6. Suppose w s the solution of problem . Then

CB.,(x), k=0n=12,

C(e7"B., () + &,"*B., (), k=1,2,3,4,n =1,
Cey"*B., (), k=1,2,n=2

Cey (e I8, () + &, " 2B, (), k=34,n=2,

|0 wn (2, )] <

for all (z,t) € Q.
Proof. The proof follows using the arguments similar to |29, Lemma 9]. O

Lemma 5.1.7. Suppose that e; < 5 and 5 < /2. Then the solution w = (wy, wy)?
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of problem can be expressed as wy, = Wy ¢, + Wn ey, N = 1,2, where

|@n,51(l‘)| < B (z,t), |5’§@n,51($,t)’ < 6,:1851(@, ’azﬂ)\n,€2<x7t)| < 62_2852(x),

for all (z,t) € Q.

Proof. The decomposition in this lemma utilizes bounds on w obtained in the pre-

vious lemma. The lemma can be proved using the idea in |76, Lemma 5. O

5.2 Domain decomposition method

We define the algorithm in the following way. We split the domain ) into five
overlapping subdomains @, = 2, x w, p = 0, ¢, m,r,rr, with {2y = (0,404), {2, =
(0'1,40'2 — 30’1), Qm = (0'2, 1— 0'2), Qr = (1 — 40’2 + 30’1, 1— 0'1), er = (1 — 40’1, 1),

and w = (0,7], where the parameters o; and o, are considered to be

oy = m1n{123 2\\//_;1 N} and o) = mm{if 2\‘//__1 N} (5.2.1)

Suppose the discretization parameter N = 2", n > 2. For each subdomain @p =
[d, c] x [0, T], we define the corresponding discretized subdomain @g’M = ﬁiv x wM

where ﬁiv = {z;| z; = th,,i =0,1...,N, h, = (c—d)/]]\fv};v[and oM = {1, | t

JAt, j=0,1...,M, At =T/M}. WealsodeﬁneQNM @p’ NQ,, QN Q ng,
and wM = wM N w. Further, we define Qppq Q x Wy, where W'y = {tg] ty =

(p—D7+lAt,0=0,...,(¢—p+ 1)mT, At = T/mT} We also introduce the mesh

Fé\i;mT on ﬁp x [—T,0] as I’gémT Q x W' For (w4,t;5) € QNM p=100,0,m,rrr

the discrete problem is

(£, g = LM Uiy +BisUpijom, = Fio (5:2.2)
where
LYMU )5 = 16U iy — el02U iy + Aiy U (5.2.3)
with
[0:X]ij = (Xij — Xy 1)/ At
and

[03X]i ;= (Xijo1 — 2Xi 5 + Xijyr) /7).

The iterative method for the approximate solution of problem ([5.0.1)) is defined as

follows:
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Step 1. Initialization: We shall start with initial approximation U (x;,t;), (z:,t;) €
—N,M
Q defined as follows

0, O0<mz; <1,0<t; <T,

U(th])) OSI'Z S ]_’ —TSt] SO,
U t) = (5.2.4)
u(0,t), (@i t;) € {0} x WM

U(]_,tj), (137;7tj> c {1} X (,UM

\

Step 2. We get the better appriximatation U V2, 1)), (x:,t;) € e QYM p=1t,0,m,r rr,
k > 1, by solving the following discrete problems

[ﬁé\z{’M Uge]]w + B Uze” i, =i for (z;,t;) € QZ’Ma
UL (2i,t;) = (e t;) for (2;,t;) € Tpyy'™
UR0,t,) = ~,(t)), Ul 40y, t;) = TUF (4o, t;) for t; € w™

e U[k]]m + B ijﬂ]i,j—mT =fij for (z;,t;) € QN
UM (2t ;) = @(x;,t;) for (z;,t;) € FéVTTT,
\ UM —d0,,t;) = T, U (1 — doy, t;), UR(1,t5) = v,(t;), fort; € wM
k k
[EN,M UM+ B, UH] m. = Fi for (z;,t;) € Q)™,
zi, t;) = d(x4, t;) for (x;,t;) € I‘i)\;gm*,

U
U (oy,t)) = U (01,1), t; € WM
(402 301,t;) = T, U*~ 1](402—301,tj) for t; € wM

(XM UWY); + By U%,jfmf =Ffi; for (z;, ;) € @,
ULk}(I'i,tj) = ¢(x;,t;) for (z;,t;) € FNmT
U1 — 40y + 301, 1)) = U (1 = doy + 304, t;), for t; € w

\ ULk}(l_ghtj) :EUL@(l_Ul»tj)v for t; € wM

[ETJX7M Uv[’]:L]]’LJ + B U’gfz]zy -ms fi,j for (xza ) QNM
U[k}(xw ) = ¢(ZL’1,7§]) for (ZEZ, ) S PNmT

bm >
\ UM (0y,t;) = TU[k](ag, ), UE(1 = 0y,t)) = T, UM — 09, ), fort; € wM

where T, U Lk] denotes the piecewise linear interpolant of ULH at given time step t;

on the mesh 27 = (2,\12,) U (20 \12,,) U 22 U (22\12,) U (22\12,).
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Step 3. To get U™, we combine U[p]"’]7 p =200 L, m,r,rr, in the following way

(

k —N,M |, —=
ngz](fivtj)a (75,t5) € Qp \ Qg
k —N,M | —=
U (i ty), (t;) € Q7 \ Qs
U[H (Iia t]) = Uq[—,’i] (xivtj)v (xivtj) S @Z’M7 (525)
—N,M , —
U7[“k]<xi7tj)7 (xivtj) S Qr \Qm7

| U, ty), (zit;) € Q" \ Q.

Step 4. 1f
(U — U] <1

(desired tolerance Y is achieved), then stop; otherwise get a still better approximation

by repeating Step 2.

5.3 Error analysis

For each p = 00, ¢, m,r,rr, the operators Ei,v M and .,E,]DV M gatisfy the following dis-

crete maximum principles.

Lemma 5.3.1. Let the mesh function Z satisfies Z(x;,t;) > 0 for (z;,t;) € Flj)\i;mT
and Z(xg,t;) > 0, Z(xn,t;) > 0 fort; € wM. Then [[,]pV’MZ]i,j > 0 for (z;,t;) €
Q)M implies that Z(x;,t;) > 0 for (;,t;) € @;V’M.

Proof. We refer to 77, Lemma 9]. O

Lemma 5.3.2. Let the mesh function Z satisfies Z(x;,t;) > 0 for (z;,t;) € FéY;)mT
and Z(xg,t;) > 0, Z(xy,t;) > 0 for t; € wM. Then [££,V’MZ]Z~J > 0 for (z;,t;) €
Qf)V’M implies that Z(z;,t;) > 0 for (x;,t;) € @;V’M.

—N,m,

Proof. Let Y (x;,t;) = Z(xi, t;) for (w,t5) € Q04 , p = €, £, m,r,rr. Then, we have

Y (z;,t;) > 0 for (z;,t;) € Fgl;mf and Y (20,t;) >0, Y (zn,t;) >0 for t; € wiy.

Also
[Ei)v’M Y]i,j 2 _Bi,j Y(xiatj—mT) Z 0 for (ZL’Z‘, tj) S QZ’{ET

Therefore, using the discrete maximum principle for [,I])V M it follows

—N,m,

Z([L’i,t]’) = Y(l’l,t]) Z 0 for (QTi,tj) € Qﬂ;Ll .
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—N,m, .
We now use Z(xz;,t;) > 0 for (z;,t;) € Qp;ﬁLS_l, and the previous arguments to

deduce that

—N,m,

Z(x;,t;) > 0 for (z;,t;) € Qs >8> 2.

We shall analyze the present method using the following auxiliary problems

(

[ﬁé\g[’Mﬁee]i,j + Bi,j/ﬁéﬁ;i,j—mq— =rfij for (z;,t;) € QZ’M>
Ug@(xi,tj> = (ﬁ(l’z, t]) for (l’i,t]’) S Fl])\,[é;'%?
L UM(O, tj) = ’U,(O,tj), Ugg(40'1, tj) = ’U,(40'1,tj) for tj S wM,

([ (ENMT, Ly + BiUnpijom. = f i for (z;,t;) € QNM,
U, (2:,t)) = ¢(z:, 1)) for (z;,t;) € T,
L U,«T(]. — 40’1,tj) = U(]. — 401,tj), Umn<].,tj) = ’U,(]_,tj>, for tj c CUM,
/ —_— —
[ffzv MUY+ BijUsijm, = fi for (x;,t;) € Q)
U(xi,ty) = Pp(ai,t;) for (z;,t;) € Fé\;;mf,
L Ug(O'l,tj) = 'U,(O'l,tj), Ug(40'2 — 30'1,tj) = ’U,(40'2 — 30‘1,t]‘> for tj € wM,
[friv’M?jr]i,j + Bi,j/i]/r;i,j—mf =fi; for (z;,t;) € QNM,
ﬁr(xi,tj) = ¢(z4, 1)) for (z;,t;) € Fé\;’ﬂmf,
U, (1 — 40y + 301,t;) = u(l — 40y + 301, t;), for t; € wM,
L /ﬁT(l—Ul,tj) :’U,(l—O'l,tj), for tj ECL)M,
( LYMT )is + Biy Unmiijom, = fi; for (z;,t;) € Q™,
U,(2:,t;) = ¢lai,t)) for (z;,t;) € T,
L Um<0'2,tj) = ’U,(O'Q,tj), Um<1 — O'Q,tj) = 'U/(l — UQ,tj), for tj c CL)M.

Before continuing further, let us define
M = max{|[(Tg — UMY (401, 1) oo, [[(Trr = T;UR)(1 = 404, 1) oo,
(U = TUR ) (d0s = 301, 45) oo, (U = T, UF ) (1 = 403 + 301, 5) | oo},
Gor = max {[|(Ts = Tae) 1 ))lloos (T = U )1 = 01,5l
o = max {[|(Tn = U) (021 oo (o = TUr)(1 = 0215 oo}
Gior = max {||(Tse = U ) (o1, oo 1T = U1 = 01,1 }
Caor—301 = max{||(Ty = T; Upn) (402 = 301, ;) |oo,

||(U7' _ 73 Um)(l — 4oy —1-30'1715]')”00}’
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o~ _N,M —
( Up(wi,t;), (v5,t5) € Qy \ Qp
o~ _N7M J—
Uz, tj), (z:,t;) € Q" \ Qs

—~ P

U(zit;) = Un(zity), (wit;) € Q™ (5.3.1)

/_\U/T<xi7tj)’ (mi’tj) € @:’V,M \@m’

—

—NM, —
\ UM"(:C’L':tj)a (:Ciatj) EQ’FT \QT

Lemma 5.3.3. Suppose u is the solution of problem and U is as defined in
5.3.1). Then
lu— Ullgva < C(AL+ N~>In* ), (5.3.2)

Proof. For (x;,t;) € Qf)V’M,p =0, rr, we have
£ (u=T )i | = [[(£5M = £,)ulis| = |[(6:— D) uls;+ E[(92—62)uliy| (5.3.3)

< CAt+ ECh?,Ha;l'U'(-atj)H[;ti_hﬂCiH}
< C(At+ N?In*N)

where we have used Taylor expansions and h2 < CeyN~2In* N. Hence, using the

discrete maximum principle for £ i)v M we get
[l = T, [[grva < C(At+ N2’ N). (5.3.4)
P

Next we get a bound for |(u — Tf/p)(xi,tm, (i, t;) € QM. p =€, r. For the same
we use Taylor expansion and Lemma to get

LENM(w — T )iyl < |[0tn — punli] + enl [0%un — 62u]i ]

< CAt + &,|[0%u, — 82unlisl, n=1,2.

For the term en[ﬁgun — 5§un]i7j, we use the decomposition uw, = v, + w,, w, =

Wy, + Whe, to deduce
en| [2tn—02unli s < €n(|[020n =030 5| H|[02Wn e, —02Wn e, iy |+ [02Wn e — 02 W c)ij )

< anhznaivn(-v ;)]

1+ Cen||O2W e, (1 15)]

[i—1,2i41 [Zi—1,2i41]

[i—1,2441]

+Cenh |0 Bn ey (-, 1))
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<CN 2 >N (5.3.5)

where we have used Taylor expansions, Lemmas [5.1.4] and [5.1.7, and the mesh width
. . o NM :
to get 1} Hence, the discrete maximum principle for £, p = (,r, gives

|u — ’ﬁpuépw,M < C(At+ N72In® N). (5.3.6)

To estimate ](u—ffjm)(xl, t;)|, we need a bound on \£%ﬁ4(u—/ﬁm)”, (zi,t5) € QMM
For the same we use the decomposition u, = v, + w, to split the truncation error as
£ (= Uil < [[61un — Opunlij| + enl[070n — 620nli ] + €nl [05wn — Swnlis|

v

< CAt+Cenhp 10200 () iz aie) + CEnll Own (s )i o]

< O(At+N72), (5.3.7)

where we have used Taylor expansions, Lemmas|5.1.4]and [5.1.6to get ([5.3.7)). There-

fore, using the discrete maximum principle for £ %’M , we have

[ = Ul < C(At+N72). (5.3.8)
Combining (5-34), (5.3.6), and (5.3.8) yields
lu = Ullgva < C(At+N~In* N)

which is the desired result. O]

Lemma 5.3.4. Suppose UM is the k™ iterate of the algorithm defined in Section

and U is as defined in . Then

1T — UM gy < C27% 4+ C(AL+ N7 In* N). (5.3.9)
Proof. Letting
ZT; -
Vi) i= L (T = U (ot),
where
|:£Z’M (fi]lﬁ - ULIK]>]ZJ =0 for (‘r’mt]) S QZ7M7
AU/M - U%] (Ii,tj) =0, for ($Z‘,tj> € Fl])\fé?T,

/l\j/gg - ULIE] (O,tj> = 0, ‘ (?jgg - ULIE]) (40’1,tj) S le, for tj € wM,
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we obtain

’l,bi(.’ll'i,tj) > 0 for (l’i,t]’) S Fl])\fé;n‘r,

¥*(0,t;) = 0,9*(20,t;) > 0 for t; € wM

and for (z;,t;) € Q™

1+0>0.

z;
(£ M i, = (Am-+Bi7j)4
01

Then, by the discrete maximum principle, we get

—N,M
for (x;,t;) € Qu

‘(Uﬁz— UM (i, ty)] < =

Hence
Uy — UY [1] as z; < oy. 5.3.10
H o« Uetllgnamg, = i =7 ( )
Similarly
— 1
‘VLV_UENMW < =¢l, (5.3.11)

Next, we introduce the mesh function

W ) = () + G 1k (T = U (),

—2? 4+ (1309 — 11 1203 + 240% — 37
¢(z) = e+ (139, 71)0 + 120, + 240, 0102» x € |01, 402 — 301],
48(0'2 — 0'1)2

is a monotonically increasing function with ¢(oy) = 1/4, ¢(4doy — 301) = 1, ¢(02) =

1/2, ¢ >0 in ﬁév, and [£0¢1] > 0in Q"M Also

( [,EéV’M (/ﬁg — UL”)]' =0 for (z;,t;) € QéV’M,
17]

('ﬁg - UL”) (z:,t;) = 0, for (z;, ;) € T,

(@~ 1) ot
</[\]Jg — UL”) (4o — 3071, )

< (o 1+ 1M1, for ¢ € wM

<M1, fort; € wM

\

where (01,t;) € Qa is used to get

< (ol + C[”l t; € w.

‘(ﬁe - UL”) (01,5)

= ’(ﬁe —I; U%) (o1, t5)
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Hence, using the discrete maximum principle for £2V’M we have
‘(TJ/@ N ULI]) <Iivtj) < Qb(xi)g[l]l + Ccn]- for (171'7 tj) < @é\]’M
Consequently
— L 1
H u,— vl gvng S 56U+ o (5.3.12)
Similarly, we can obtain
H?j’“ _yl <Ly, (5.3.13)
"ligi e, T 2 '
Next, we obtain a bound for U, — U%] g We have

( [£7Nn’M<TJ/m—U£i}>],:0, for (z;,t;) € QNM,
i\j

Um—U£}j> (i, t;) =0, for (x;,1 )Efévnzn’,

‘(ffjm_ UE”L]) <027 ) <6021+2<[1]1+C0'117t Gw

| (T = U8) (1= 00 ))] < Gl + 301+ G,1, 5 €0

as (02,t;) € Qz M and (1—09,t;) € @iVM Now use the discrete maximum principle

for £5M to get
9. v

1
@N,M = §C[1} + <U1 + Cﬂz'

m

Letting ¢l = H U - U[k]H from ([5.3.10))-(5.3.14)), it holds

—N,M "’

1
o <S¢ G+ G

To estimate ¢!? we need a bound on ¢, We have

¢ = max{||(Un = UY) (401, 1))l o, [[(T sy = T;UM) (1 = 01, ) |

(5.3.14)

1(Ue — T, UW) (405 — 301, 85)| oo, ||(TU, — T UMY (1 — 40 + 304, 15) |0 }-

Using a triangle inequality, the stability of the operator 7;, (5.3.12), (5.3.13)), and

(5.3.14)), we can bound each of the terms involved. We get

1
C[Z] S éc[l] + 7, n= CO'I + CO'Q + C401 + C4:7273017

Hence, we have

1
max {925[1], C[Z]} < 5c[1} +
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We use the similar argument to get
1
(K] e+ « 2 o[R]
max { ¢, ¢ }_QC + 1.
So ¢ < 2=(k=D¢l 4 29 Therefore
Pl < o=k¢ll 4o, (5.3.15)

Use Lemma to get C[” < C. Next, we have to find a bound on 1. As (01,t;) €
@Z’M, (1—o0y,t ) € QM , (09,5) € Qe . (1—o09,t) € Q , we use Lemma |5.3.3
to deduce (,, + (,, < C(At + N=21n®> N). To get an estimate for (4,,, proceed as

follows

]@-7;’(7)(401, D < (= Tow) (4o, t)] + (5.3.16)

T (u=U.) (o1,1,)

< |(u— T;u) (401,t;)| + C(At + N"2In* N),

where stability of 7; and Lemma are used for the second term. Further, using
Up, = Vp + Wy, Wy, = Wy, + Wy, and standard interpolation error estimate we get
|(un = Tjun) (401, 85)| < (00 = Tivn) (4o, 1) | + [(Wne), — Tjlne, ) (401, 85))|

H(Wne, = Tjtn,e,) (401, £5)],

< Chllozv(.. 1;)]

[@i,xit1] + H@nﬁl ('7 t])|

[:Ei 7xi+l]

+COR{ |07 W e, (-, 15)]

[$i7xi+1] )

<CN7?+C|B,|

[zi,541] + ChZEQ ! ||BEQ|

[-’177, Iz+1
<ON?2In®N,n=1,2, t; € wM

Similarly
(u—T;U,)(1 —401,t;)| < C(At+ N2In® N), t; € w™
To bound (44,-34,, proceed as follows

|(u=T30m) (o2 = 301, t5)| < (w = Tjw) (4o = 300, 15)| +|T; (w= T (472 = 301,15)

< CN?2+ C(At+ N2In*N), t; € w™,
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where previous arguments are used to prove
|(un = Tjun) (402 =301, ;)| < |(vn = Tjvn) (402 =301, 15)| + | (wn — Tjwn) (402 — 301, 1)

< Chi 1030 (s t) zawasa) + ClHOC t) a0
<CN72 n=1,2, t; e wM.

Similarly, it holds

(u—T;Up)(1 = 405+ 301, 1) < C(At+ N2 In* N), t; € w™.

We now combine the bounds for (,,, (s, Cioy, and (uoy-30, to get n < C(At +
N—2In*N ). Thus, we have the proof the lemma. [

On combining Lemmas [5.3.3] and [5.3.4], we have the following main convergence

result for the proposed method.

Theorem 5.3.5. Suppose wu is the solution of problem and UM is its approa-
imation obtained by the k™" iterate of the method. Then

lu— UY|[gvm < C27% + C(At+ N2 In* N). (5.3.17)

5.4 Numerical results

To validate the convergence result of Theorem [5.3.5, we shall provide numerical

results for the following two test problems.

Example 5.4.1. Consider the problem

oulet) _ poued) | Au(z,t) + Bu(z,t — 1) = f(z,t) (2,1) € Q := Q2 x (0,2],

ot
u(z,0)=0 (z,t) € 10,1] x [-1,0],
u(0,t) =0,u(l,t)=0 t € (0,2],
with

A:( 3(1+x)? —(1+2%) ),B:<_1 0 >7f:<cos(7rx/2)>.
—2cos(mz/4) 4dexp(l —x) 0 -1 x
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Example 5.4.2. Consider the problem

ouled) _ g2UED 4 Au(z,t) + Bu(e,t — 1) = f(z,t) (2,1) € Q := Q2 x (0,2,

u(z,t) = ¢(x,t) (x,t) € 10,1] x [-1,0],
u(07t> :70(t)7u<17t) :71@) te (072]7
with

3 -1 -1 0 t
A — ’ B— : f— fl(x7 ) .
where f1, f2, ,7, and v, are so that

ur(z,t) = (z + te™" + (¢ (7) + ¢2(z) — 2),

up(w,t) = (t = t°)(da(r) — 1) + e1(1 = e ") (¢n(2) — 1),

with y -2}/
—X/\/E} —(1l—=2)/+\/E;
di(z) = & te Y i1
1+ e M/Ve

First component ul

Second component u2

First component ul
Second component u2

Figure 5.1: Approximate solution plot for Example taking parameters £ =
1076, g9 = 107* with N = 32, M = 64. The left figure is for the 1st component and
the right figure is for the 2nd component.

As we know the exact solution of the test problem in Example [5.4.2] we get the

errors by
Byt = |ty — Uy |lgmvar,n = 1,2,
where ﬁf ’sAt denotes the nth component of the approximate solution obtained after

terminating iterative process. For the test problem in Example we compare

two approximate solutions Unj\f ;At and Ui{\;’m/ 1 obtained with time step sizes At and
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Table 5.1: Errors Eé\{ ’E?t and EY ’At, and convergence rates gy, and Q%mf for Example

P-4 T
N =2 N =26 N =2 N =28 N =2

£1 At =1/4 At =1/4? At =1/43 A=1/4* At =1/4°
1.939e-02 7.351e-03 2.151e-03 5.620e-04 1.421e-04

107! 1.399 1.773 1.936 1.983
1.587e-02 5.930e-03 1.757e-03 4.608e-04 1.167e-04

1.420 1.755 1.931 1.982
2.349¢-02 8.179¢-03 2.281e-03 5.882e-04 1.482¢-04

1072 1.522 1.843 1.955 1.989
2.047¢-02 7.211e-03 2.049¢-03 5.312¢-04 1.341e-04

1.505 1.815 1.947 1.986
2.407¢-02 8.296¢-03 2.287¢-03 5.873¢-04 1.478¢-04

1073 1.537 1.859 1.962 1.990
2.222¢-02 7.696¢-03 2.158¢-03 5.575e-04 1.406e-04

1.529 1.834 1.953 1.988
2.527¢-02 8.615e-03 2.374e-03 6.098e-04 1.535e-04

1074 1.553 1.860 1.961 1.990
2.289¢-02 7.924e-03 2.224e-03 5.781e-04 1.468e-04

1.530 1.833 1.944 1.977
2.703e-02 1.006e-02 3.170e-03 9.147¢-04 2.467¢-04

1075 1.425 1.666 1.793 1.890
2.307e-02 7.977¢-03 2.236e-03 5.805e-04 1.474e-04

1.532 1.835 1.945 1.977
2.703e-02 1.006e-02 3.170e-03 9.145e-04 2.589¢-04

1076 1.425 1.667 1.793 1.820
2.312e-02 8.025¢-03 2.240e-03 5.812e-04 1.476e-04

1.527 1.841 1.946 1.977
2.703e-02 1.007e-02 3.169¢-03 9.145e-04 2.589¢-04

107 1.425 1.667 1.793 1.820
2.447¢-02 8.792e-03 2.624¢-03 7.101e-04 1.856e-04

1.477 1.745 1.886 1.936
2.703¢-02 1.008e-02 3.169¢-03 9.144¢-04 2.589¢-04

108 1.424 1.669 1.793 1.820
2.548¢-02 1.006e-02 2.954e-03 8.406e-04 2.312¢-04

1.341 1.768 1.813 1.863
ENAT2.703e-02 1.008e-02 3.170e-03 9.147e-04 2.589¢-04

oumt 1.424 1.669 1.793 1.820
EYST 2.548e-02 1.006e-02 2.954e-03 8.406e-04 2.312e-04

oyt 1.341 1.768 1.813 1.863

At/4 in each subdomain, respectively, and using N and 2N spatial mesh intervals in

each subdomain, respectively; where subdomain parameters o, and oy defined with

parameter N are same used for both the approximate solutions. We get the estimate

of the errors as follows
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Table 5.2: Errors ET{X ’E?t and EY ’At, and convergence rates g, ., and Q%mf for Example

p-43
N =2 N =26 N =27 N =28 N =2

£1 At =1/4 At =1/4? At =1/43 A=1/4* At =1/4°
5.083e-02 1.451e-02 3.786¢-03 9.573e-04 2.400e-04

107! 1.809 1.938 1.984 1.996
3.880e-02 9.859¢-03 2.476e-03 6.197e-04 1.550e-04

1.976 1.994 1.998 2.000
6.200e-02 1.759e-02 4.580e-03 1.157¢-03 2.901e-04

1072 1.817 1.941 1.985 1.996
8.297¢-02 2.105¢-02 5.282¢-03 1.322¢-03 3.305e-04

1.979 1.995 1.999 2.000
6.625¢-02 1.878¢-02 4.888¢-03 1.235¢-03 3.095¢-04

1073 1.819 1.941 1.985 1.996
8.581e-02 2.176e-02 5.460e-03 1.366e-03 3.416e-04

1.979 1.995 1.999 2.000
6.805e-02 1.924e-02 5.008¢-03 1.265e-03 3.170e-04

1074 1.822 1.942 1.985 1.996
8.645¢-02 2.193e-02 5.501e-03 1.376e-03 3.442¢-04

1.979 1.995 1.999 2.000
6.867¢-02 1.939¢-02 5.041¢-03 1.272¢-03 3.188e-04

1075 1.824 1.944 1.986 1.997
8.666e-02 2.199¢-02 5.516e-03 1.380e-03 3.451e-04

1.979 1.995 1.999 2.000
6.901e-02 1.949e-02 5.066e-03 1.279e-03 3.205e-04

1076 1.824 1.944 1.986 1.997
8.672e-02 2.201e-02 5.522e-03 1.382¢-03 3.455e-04

1.978 1.995 1.999 2.000
6.914e-02 1.952e-02 5.075¢-03 1.281e-03 3.211e-04

107 1.824 1.944 1.986 1.996
8.674¢-02 2.201e-02 5.523e-03 1.382¢-03 3.456e-04

1.978 1.995 1.999 2.000
6.919e-02 1.954e-02 5.079¢-03 1.282¢-03 3.214e-04

108 1.824 1.944 1.986 1.996
8.675¢-02 2.201e-02 5.524e-03 1.382¢-03 3.456e-04

1.978 1.995 1.999 2.000
ENAT 6.919e-02 1.954e-02 5.079¢-03 1.282¢-03 3.214e-04

oumit 1.824 1.944 1.986 1.996
EYST 8.675e-02 2.201e-02 5.524¢-03 1.382¢-03 3.456e-04

ot 1.978 1.995 1.999 2.000

E,JZV;_:At = || UnN7}:.At — UZJZ’At/4||§N,M, n = 1, 2.

After that, for some non-negative integer m, we use fixed value £1 = 107 to get

EN,At

n,e1

= max{E

N,At
n,(e1,1)’

N,At
En,(al,mfl)’ e

N,At
E’n‘v(sl 7107777,)

}.
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Table 5.3: Iteration counts for fixed e; = 1078 in Example

gp=10" N =2 N =2° N =27 N =28 N =29
At =1/4 At =1/42 At =1/43 A=1/44 At =1/4°
3

S
o

O 1 O UL Wi~ |
NN W W WD N

— =N W WD W
—o DD O OT O s
= =N W Ot Oy Ot Ot Ot
R RN WO 0O O

Table 5.4: Iteration counts for fixed £; = 10~® in Example |5.4.2

g=10" N=2° N =2° N =27 N =28 N =29
At =1/4 At =1/4? At =1/43 A=1/4* At =1/4°
4

o

S

0O 1 O UL = W N+~ |
=N W W

— o N O OT O R s
=N W ot Oy Ot Ot Ot
— =N WO 10 OO
il \CENUCENIIEN IIEN BN N |

First component ul
Second component u2

First component ul
Second component u2

Figure 5.2: Approximate solution plot for Example taking parameters ¢, =
107%, 65 = 107* with N = 32, M = 64. The left figure is for the 1st component and
the right figure is for the 2nd component.
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We compute the uniform errors by EMAf = max Eflveft The rates of convergence are
€1
obtained with
Oney = IOgQ(ErJz\jé?t/Egj\eflAtM) Q;J;m‘f _ logz(Eg’At/EzN’AtM).

The stopping criteria of the method is chosen to be
U — U] ova < N72 (5.4.1)
For various values of 1, N, and At, we provide the numerical results for Examples

4.1 and [5.4.2 in Tables [5.1] and [5.2] respectively. For each 1, the first and second
EN At

rows represent the errors and rates of convergence g, ., for the first component,

and the third and fourth rows represent the errors Eév E’lAt

and rates of convergence
02,c, for the second component. At the end of each table we provide uniform errors
and uniform rates of convergence for each component of the solution. From Tables
and 5.2 we see that the numerical results are totally in agreement with Theorem
5.3.5] For fixed g = 107%, Tables and display the number of iterations that
the proposed method needs to give satisfactory numerical approximations. Note that
only few iterations are required by the proposed method and the number of iteration
reduces to one when the parameters are small and of same magnitude.

Figures and display both the components of the approximate solutions
for Examples [5.4.1] and [5.4.2], receptively. Clearly, one can see the layers at both the

boundaries.

5.5 Conclusions

In this paper, we have developed and analyzed a robust domain decomposition
method of SWR type for a coupled system of singularly perturbed parabolic reaction-
diffusion problems with delay in time. We used information obtained from derivative
bounds to partition the domain into five overlapping subdomains. On each subdo-
main the problem is discretized by employing a scheme in which central difference
scheme is used for the spatial derivative and the backward Euler scheme is used for
the time derivative. We established the discrete maximum principle and based on
that the method is shown to be convergent independent of both the small parameters.
In the end, some numerical experiments are conducted to confirm the applicability

and robustness of the method.



