A robust domain decomposition method for
singularly perturbed parabolic reaction-diffusion

systems

We consider the following coupled system of time dependent singularly perturbed

reaction-diffusion problems

Lu:=0u—EPu+Au=f inQ:=Qx(0,7]=(0,1) x (0,T],
u(r,0) =0 in Q, (4.0.1)
u(0,2) = vo(t), u(l,) = ~,(t) in (0,77,

where f = (f1, f2)7, u = (u1,u2)”, E = diag(ey,e2) and 0 < g; < &5 < 1. For each
(z,t) € Q, the coupling matrix A = (a;;(x,t)) is assumed to satisfy

aij(z,t) <0, i# 7], (4.0.2)
2

a;(x,t) >0, Zaij(:c,t) >a>0, i=1,2. (4.0.3)
j=1

Further, sufficient regularity and compatibility conditions on the data of are
assumed in order that w € C*%(Q)?, cf. [29,[72]. With these assumptions problem
exhibits a unique solution having overlapping layers at z = 0 and z = 1
of O(y/EiIn(1/¢;)),i = 1,2; see [29]. Such systems arise in the modeling of various
physical phenomena, for instance in the model for turbulent interaction of waves and
currents [73], in the nonlinear model for predator-prey population dynamics [74],
and investigation of diffusion processes complicated by chemical reactions in electro

analytic chemistry [75].

In the present chapter, we consider the most interesting and more challenging

case of the coupled system of singularly perturbed parabolic reaction-diffusion equa-
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tions where different diffusion parameters are present in each equation, which in
general, can have different order of magnitude. We first describe a domain decompo-
sition method of SWR type to solve problem (4.0.1)) numerically. The discrete SWR
method invokes the decomposition of the original computational domain into five
overlapping subdomains. In the iterative steps of the Schwarz method, we employ
the central difference scheme in spatial direction and the backward Euler scheme in
time direction to solve the problem on each subdomain. We present the error analysis
of the method, which is based on some auxiliary problems that allows to prove the
uniform convergence in two steps, splitting the discretization error and the iteration
error. The numerical approximations obtained from the method are shown to be
almost second order (due to the logarithmic factor) uniformly convergent in spatial
direction and first order convergent in time direction. At the end, some numerical

experiments are conducted to support the theory.

4.1 Derivative bounds

In this section, we obtain bounds on the derivatives needed for convergence analysis
of the proposed method. We decompose the solution u as v = v + w, where v is

the solution of the following problem

Lv :f n Q7
v(0,t) = z(0,t),v(1,t) = z(1,t) in (0,77,
v(z,0) = in Q

with z satisfying

Oz+ Az =F, (z,t)€{0,1} x (0,77,
z(xz,0) =0, x € {0,1},

and w is the solution of the following problem

Lw=0 in @,
w(0,t) = (u — v)(0,t),w(1,t) = (v —v)(1,t) in (0,7T],
w(z,0) =0 in Q.

Here, v is the regular part of the solution and w is the layer part. Now using the ideas
in Section 2 of [29], we can prove that the first two derivatives of the solution with
respect to time variable are bounded independent of the perturbation parameters.

Further, we can obtain bounds on the derivatives of v and w as given in the following
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lemma.

Lemma 4.1.1. The solution u of satisfies
10juillg < C,  for €=0,1,2, i=1,2.

[illg < OO+, [vallg < CO+eb™), s=0...4,

wi(z,1)] < CBe,(x),  [wa(2)] < OB, (2),

5w (2, 1)] < C(e7**Be, () + 65" Boy (), |05ws(x,1)] < Cey**By(x), s = 1,2,

5w (2, 1) < Cle7**Be, (2) + &5 °B., (), 5= 3,4,

ws (1) < Ceyt (e, CPB, (x) + 6, VPB, (x), s =3,4,

for all (z,t) € Q.

A further decomposition of the layer part given by the following lemma, which we
can establish using the arguments of |29, Lemma 10], is also needed for convergence
analysis of the proposed method.

Lemma 4.1.2. Suppose that e, < &5 and g5 < /2. Then w = (wy, ws) is decom-
posed as follows

Wy = Wiy + Wiey, Wy = Wag + Wag,, (4.1.1)
where

|ﬁ71,€1 (l’)| < B€1<xvt)v |82{U\1,€1 (Jf,t)| < 51_1881 (ZE)’ |((“);1U71752(J},t)| < 52_2882($)’
(4.1.2)

|@oe, (2, 1) < By (2), 105026, (2, 1)] < 5" Bey (), |00, (2,)| < £3°Bey (),
(4.1.3)

for all (x,t) € Q.

4.2 Domain decomposition method

To set up the method for solving problem (4.0.1)), we decompose the computational
domain domain ) into five subdomains @,, p = ¢, ¢, m,r,rr that are overlapping
(see figure on page 65). Here, we use behavior of the solution to define the

decomposition in the following way

QP = Qp X (0>T]’ b= %,f,m,r, rr,
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where Qg = (0,404),Qy = (01,402 —301), QL = (02,1 —02),Q, = (1 — 4oy + 30,1 —
01), and €, = (1 — 40y, 1) with oy and oy (see [76]) defined as follows

oy = mm{;iiéglAﬁ and oy = Imn{? %?TIN} (4.2.1)

Suppose N = 2" n > 2. On a given subdomain @, = €, x (0,7], where Q, =

(b,a), we introduce a rectangular mesh Qév x wM, where ﬁ;v = {z; = ih,, 1 =
0,1...,N, h, = (a—0b)/N} and W™ = {t; = jAt, j = 0,1...,M, At = T/M}
with QN Q N, and w™ =©" N (0,T]. On each subdomain Q)" we consider

the central difference scheme for the spatial discretization and the backward Euler

scheme for the time discretization. We consider
[LMU,)i = fi (4.2.2)
with discrete operator defined as follows

L), = [0:Up )iy — €1102Up )iy + @114 Up i g + @12:0,5Up 2 (4.2.3)
plvy — Y e
g [0:Up2)ij — €2(02Up2)ij + a224;Up2:ij + 214, 5Up 1

where

Vikig — Vpkig—
[0Valsg = BB for k=12,

and V Vv V,
= 2 3 %
[02Vplig = = — 25 L L for k=1,2.

After describing the discretization on each subdomain, the algorithm is given

below.

Step 1. Initialization: Defining oY = (@ZM\@K)U(@?]M\@ )UQ u(@Q,
(@Z’M\ﬁr), we consider U (z;,t;) for (z;,t;) € @N’M to be

—N,M

\Q@p)U

UY0,¢,) = w(0,t;), UYL t;)=u(lt;) fort;ew"

U (2;,0) = u(2;,0) foraz; €,  UYz,t;):=0, z;€(0,1),¢; € (0,T).

Step 2. On subdomains Qév’M, p =000, m,r rr, we compute Ug“], p="Ll, 0, m,rrr,

by solving
LM U = Fiy for (z;,1;) € Qp™,
UL]Z](% 0)=0 for z; € QZ,

UR(0,8;) = vo(t;), Ul 4oy, t;) = T, UF (404, t;) for t; € wM
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( [LZ’M Uyﬂ]w =fi; for (xwty> e M,
UM (z;,0)=0 for z; € Qm
U1 —doy,t;) = TUR N1 — 4oy, ty), UR(L 1) = 74(ty), for t; € w™

( (LY U[Tk}]z‘,j =fi; for (z;,t;) € QNM,
UM (z;,0)=0 for z; € ﬁ,{v,
UM(1 — 405 4 301, t;) = T, UE V(1 — 4oy + 304, t;), for t; € wM

L UH(1 —o1,t)) = TUN1 - 04, t5), for t; € wM

(LU= for (:,;) € Q"
ULk}(xl, 0)=0 for z; € ﬁév,
ULk}(al, tj) = TU (017 i) for t; € wM

\ ng}(éLO'g 301,t;) = TU¥ (4o, — 30y,t;) for t; € wM

(LM UM, =F; for (z;,;) € Qm™,
UF(2;,0) =0 for ; € Q0.

UM(oy,t,) =T, ng](ag,tj), for t; € wM

[ UN( = o00ty) = TUN(L — 03,15), for t; € ™

Step 3. On combining the solutions Ug“], p=2L0 L, m,r rr, we get U given by

(

U @i ty), (xit) € Q™ \ Qp
UM @i ty), (t) €@, "\ @,
UMz, t;) = UM(a,t), (wit) € Qo (4.2.4)
Ul ), (wit) €@\ Q,
Ul ty), (wit) €Qn \Q,

Step 4. Rule for stopping: when
U — ¥ <1
is satisfied, where T is prescribed accuracy, then we stop the iteration process;

otherwise we go to Step 2.

It is easy to verify that the following discrete maximum principle holds for the

operator L:f)v M

Lemma 4.2.1. Suppose Z,o; > 0 and Z,n,; > 0 fort; € wM | and Zyio > 0 for
x; € ﬁ;v. If [LI])V’MZP]U > 0 for (x,t;) € QM. then Zy;; > 0 for (z;,t;) € @5’]\/[
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4.3 Error analysis

We provide uniform convergence analysis of our method in this section. For analysis

we consider ﬁp, p =400, m,r rr, satisfying

/

N,M 1 N,M
(L™ Uuliy = £, (@i t5) € Q'™
Ugg(iﬂi, 0) = 0, x; € QZ,

L Ugg((),tj) = U(O,t]’), U@g(40’1,tj) = U(40’1,tj>, tj € CUM,

[L7]~\7[~7Mfijrr]i7j = fi,ja (.Ti, t]) S Qi\rf,’M,
/l-\]/rr(SCi,O) = O, x; € ﬁi\:ﬂ,

L U,«T(]. — 40’1,tj) = U(]. — 401,tj), Umn(].,tj) = ’U,(]_,tj), tj c wM,

(LYY = fi (zi,t;) € QXM
UT(ZL‘Z', O) =0, T; € ﬁiv,

U,(1— 405+ 301,t;) = u(l — 4oy + 301, 1;), t; € wM

L Ur(1—40'1,tj):’u,(1—0'1,tj), tj EMM,

( N.M7F7 N,M
Eg Uf]i,j = f@j? (*Tia t])NE Qe )
Ug(l‘i,O) =0, T; € ﬁg ,

L Ug(O'htj) = ’U,(O'l,tj)7 Ug(40'2 — 30’1,tj) = u(402 — 30’1,t]‘), t]‘ c wM,
[L%’M?jm]i,j =Ffis (zi,t5) € QM
/ﬁm(:vi, 0) =0, x; € ﬁﬁ,

—~

L Um<0'2,tj) = ’U,(O'Q,tj), Um<1 — O'g,tj) = U(l - O-Q,tj), tj S (,L)M,
where LIJ,V M is the operator that was defined in Section , and wu is the exact
solution of problem (|4.0.1]).

Next we define

(

/ﬁa(l'i,tj), (wi,t;) € @ZM \ Qp;
Uiwity), (2it;) € Q" \ Qi
Ulwit) = Unlaity), (wit) € Q" (4.3.1)
AU/r(wz‘,tj)a (z4,t5) € @ivM \ Qui;
U,p(zinty), (zity) € Q0 \ Q.

Now we can separate the discretization error and iteration error as follows

lu = UM < [[u = Ullgrar + [T = UM guar. (4.3.2)
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Thus, we can separately bound both the terms. The following lemma gives a bound
for the first term.

Lemma 4.3.1. Suppose wu is the exact solution of problem and U is as defined

m . Then
lu— Ullgva < C(At+N~>In* ), (4.3.3)

Proof. To simplify our presentation we consider oo = (2\/62InN)/y/a and o1 =

(2y/e1InN)//a, that is €1 and €5 are small and of different magnitude. This is the

most interesting case of problem (4.0.1)), as overlapping layers occur in this case.
Note that

[LYM (4 — U, = [LYMu — Lu] = [§ru — Oyu] + E[0?u — 62u].
N.M . .
For (x;,t;) € Q. , n = 1,2, Taylor expansions give

Lot (w = Uil < O un(wis ity + Conhl|Ofun(- )]

[$i—1,$i+1]'

Using bounds on the derivatives in Lemma and hy < C\/eTN"'In N, we get
LM (w — Ug)liy| < C(At+ N"2In® N).
Hence, using Lemma 4.2.1| we obtain
|l — ’ﬁMHQZ,M < C(At+ N2’ N).

Similarly
lu— Uyl gnar < C(AE+ N"2In® N).

Tr

Now for (z;,t;) € QéV’M, n=1,2,

N,M
[Lf,n

(u = Uil = [t — O] j + €n[O20, — 60 5.
By Taylor expansion and Lemma [£.1.1] the first term is bounded as follows
|[Oetn — Opunliy| < CAL, (w4,1;) € Q)M n=1,2.
We use u,, = v, + w,, and w,, = Wy, -, + Wy, to bound the second term. We obtain

Enl [@%un—éﬁun]m | < el [aivn_éivn]i,j |+€nl [857:5”751 _592@%81]2}]' |+€nl [ag@n,az _(ﬁ@n,az]i,j |

Using Taylor expansions, Lemmas [4.1.1] and 4.1.2}, and the bound on the mesh width
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we have
8TL| [agun - 6a2cun]m| < anh?”aivn<7 tj) H[ﬂfi—17$i+1} + anHaiﬂ)\nﬁl (‘7 tj) H[in—1,96i+ﬂ

+ anhf ||a4wn €2 ( ) || [i—1,Tit1]
< CN7%In*N.

Therefore, using Lemma [4.2.1| we get
Hu — UKH—NM < C(At—{—N 21n? N)

In a similar way

|lu— U, lgvar < C(At+ N~ 2In® N).

We again use u,, = v, +w,, and consider Taylor expansions and Lemma[L.1.T]to get
(L (4 = Un)ligl < |[eun — Ostinli,j] + €nl(03vn — Gzvn]ig] + enl[0Zwn — Swnaliyl.

< CAt + Ce,nh2 |00va(., 1) + Ce,||02w, (., t5)]

[i—1,2441] [i—1,2441]

< C(At+ N7?).

So, we use Lemma [£.2.1] to get

l|lu — NmeNM < C(At+ N72).

Hence, combining the bounds on subdomains @g’M, p =Ll 0, m,r,rr, we have the
desired result. n

The following lemma provides a bound for the iteration error Hﬁ — U] |@N,M.

Lemma 4.3.2. Suppose U is as defined in and UM is the k™ iterate of the
algorithm defined in Section[{.4 Then

1T — UM gy < C27% + C(AL+ N7 In* N). (4.3.4)
Proof. Before we proceed to prove this lemma, we define
¥ = max{[|(Up — T, U ) 4o1, )] |oo (T e — T UF (1 = 401, ) ||ocs

(U =T U ) (405 = 301, 6) oo, (1T, = TUF)(1 = 402+ 304, )|},

Uy = max { (T2 = Tat) (o1, 15) |oe: (T = Tpr)(1 = 01,5 | }
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Doy = 05 { (T = T2, 13) s (T = T)(1 = 03,1 o}

Vo, = max {||(Tee = TU0) (401, 1)loos [|(Tre = TU)(1 = do1, 1)1 }

Vioy—ao, = max {||(Te = T, Unm) (42 = 301, ;) |oes (T = T Unn) (1 = 472 + 301, ;) | } -

Now
[LZ’M (ffja - U%)] =0 in QZ’M, <fi]’/g[ - UEZ]) (ZL’i, 0) = 0, x; € QN,

(ﬁM—U%>m@):Q ‘(ﬁa—vﬁ)@n@)gﬁmL t; € wM,

So, using Lemma [4.2.1] with

€T; -
Y (25, t5) = 40119[1}1 + (Un — Uy (@i ty),
we obtain
— x; —N,M
(T = U tp)| < 2001 for (aty) € Q™
Hence
~ 1
Uy— U < gt 4.3.5
O 0] s
Similarly we can prove that
~ 1
U, — U <~ 4.3.6
7 g < s

Next
[LéV’M </I7£ - ULH)} =0 in QéV7M7 </[7M a U%) (mi,O) =0, 7€ QN’

‘(ffjg — UL”) (40’2 - 30’1,tj) S 19[1]1, tj € LUM.

As (04,t;) is the mesh point of @Z’M, we have

’(ﬁf - UL”) (o1, ¢5)

= (U -0 (1.1

< ‘(Ef/z — /fjez) (01,t5)

+ ‘(ﬁg@ - UL;]) (O'l,tj)

1
< 0,1+ Z19“11, t; € wh.
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Defining

—2% + (1303 — 1101)z + 1203 + 2407 — 370109
= € 4oy — 3
¢lz) 48(0y — 071)? @€ londoy =30,

we have ¢(01) = 1/4, ¢(doy — 301) = 1, ¢ > 0in Q, , and [L¥M¢1] > 0 in QM.
Also note that ¢ is a monotonically increasing function and ¢(o3) = 1/2. Hence, we
can use Lemma [£.2.7] with

’l,[J:t(ZEZ', tj) = ¢(J}Z)’(9[1]1 ‘I— ’19011 :|: (ﬁg — UL”) (IL‘i,tj)7

to get
(T = U) (@it)| < 001+ 96,1 for (ai,t5) € Q)
Consequently
— . 1

H U, Ul g S50+ o (4.3.7)
Similar arguments can be used for proving

”ﬁ” — gl < Loy, (4.3.8)

ligyong, =327 0

We have
[L%’M (5m - UL}})] —0  in Q¥ (’ﬁm - Ul}j) (2,0) =0, z,€0Q".

As (09,t;) and (1 — 09,t;), respectively, are the mesh points of @évM and @iV’M, we

have

< ((’ﬁm _ TJ}) (09, 1;)

+ ’(TI} - UL”) (02, 1)

’(ﬁm - UE) (02, ¢5)

1
< V,,1+ 519[”1 + 95,1, t; €M,

‘(’ﬁm - UE}}) (1—o9.t))

< ’(ﬁm . ’ﬁr) (1— o9,t))

+/(U, - 0l) (1= o2 ty)

1
<V,,1+ 519[”1 + 95,1, t; €w.
Therefore, use Lemma to get

1

H'if’m _pl < S0+ Uy, + by (4.3.9)

—N,M
Q)
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From (4.3.5)), (4.3.6)), (4.3.7)), (4.3.8), and (4.3.9)), we conclude that

oo

1
g < 519[1] + Voy + Vo

For bounding ||TJ: -y ||§N,M we will require a bound on ¥2. For the same, we use
a triangle inequality, the stability of the operator T;, (4.3.7), (4.3.8)), and (4.3.9)) to
get

~ 1
‘(Ua ~ TUY) (o1, t;)] < Vo, 1+ 50U+ 05,1, 4 €W,

— 1
‘(UT,« — 7; Um> (1 — 40’1,tj) S 194011 + 519[1]1 + 790117 tj S (,UM,

‘ <fl\]/( — 7; U[1]> (40’2 — 30'17tj)

1
gﬁwr%1+§Wh+ﬁmL+m;,gew%

— 1
‘(Ur - 7; U[1]> (1 - 40’2 + 30‘1, tj) S 19402_3011 + 5’(9[1}1 + ’19011 + 19021, t]‘ S wM.

Thus
1
’19[2] < 519[1] + 79(71 + 1902 + 19401 + 194‘72_3‘71'

Hence, letting ¢ = ¥,, + Vs, + Va0, + V40,-30,, We have

max {19[2], Hﬁ —ph

QN,M} <+ 0W/2.

We repeat the arguments to get

max {19[“”,

00} <2
o
Consequently 9F < 2¢ + 9l /2= “and hence
U - U[’“]HQN,M < 2+ 91 /2" (4.3.10)

Now using Lemma we can show that 9l < C. Thus, we are left to bound ¢.

Using Lemmalt.3.1}, 9,, +9,, < C(At+N~21n* N), where the fact that (oy,;) €
—N,M —N,M —N,M —~N.M .
Qu » 1—o1,t;) € Q,, , (02,t) € Q, ", (1 —03,t;) € Q. , is also used. For
bounding 94, , use a triangle inequality to get
< [(u—Tju) (401, t;) +

‘ (u - 7;@) (4o, 1)) (4.3.11)

T (u=U0) (o1, 1,)|

By stability of 7; and Lemma {4.3.1] we have

T <u— E) (4o, ;)

< C(At+ N2’ N), t; € w™.
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For the interpolation error, using the solution decomposition w,, = v, + w,, we have

(= Tjua) (401, £5)] < |0 =Ty00) (01, )|+ (wn=Tyw) (s, )], £ € ™, = 1,2

(4.3.12)
The error bound corresponding to the regular part is obtained using standard inter-
polation error estimate and Lemma [£.1.1 We get

(v = Tjva) (401, 1;)| < Chl|ozv(., 1)) | SCN2n=12 t; ew"

[xi »Li41

For the layer part the argument, using Lemma and standard interpolation error

estimates, proceeds in the following way
|(wn = Tjwn) (401, ;)| < C[(Wne, = TjWne,)(401,85)] + [(Wne, — Tjlne,) (401, 1)

<@, (1) sisn) + CHENORDne (- )i

< ClIB i i) + Chiey || Bey |

[z, 1]
<CN?2W*N,n=1,2, t; € w™.

Similarly

—~

(u—T;U,)(1 - 4oy, ;)| < C(At+ N2 In2N), t; € ™.

Therefore
V1o, < C(At + N721In* N).

For estimating 9¥4,,_3,,, We use a triangle inequality to get
[(u=TUm) (402 = 301,t5)| < (u = Tjw) (402 = 300, 4;)|+|T; (w= Ui (402 = 301,1,)]
Using previous argument we get

< C(At+ N72In*N), t ewM.

T; (u— ﬁm> (4oy — 301, t5)

To bound the interpolation error we use solution decomposition u = v+ w of Lemma

A1) to get
|(w = Tju)(4oy = 301,¢5)| < |(v = Tjv)(4oz = 301, 1) + [(w — Tjw)(4oz — 301, 1;)|

< Chy, |07 (., t;)]

[i,@i41] + C||w(7 tj)|

[z, 1]



Numerical results 57

< CN? t; e w.
Similarly

(u—T;U,) (1 — 40y + 301,t;)] < C(At + N2In* N), t; € w™.
Hence
Vigy—30, < C(At+ N"2In* N).

Combine the bounds for ¥,,, Ug,, Vg, and P4s,_34, to get ¢ < C(At + N=21In* N).

This proves the lemma. [

Finally, we use (4.3.2)) along with Lemmas and [4.3.2 to arrive at the fol-

lowing main theorem of this chapter.
Theorem 4.3.3. Suppose wu is the solution of problem and U¥ is the k™

iterate of the algorithm defined in the previous section. Then

[ — UM gy < CQ27F + AL+ N72In* N). (4.3.13)

4.4 Numerical results

To verify our theoretical findings of Section [4.3| we consider three test examples and
present numerical results in this section. The stopping rule of the algorithm for all

three test examples is as follows
T — U] ova < N72. (4.4.1)
Example 4.4.1. Consider the following problem [32]

Ou— ED*u+ Au=f inQ:=(0,1) x (0,1],
u(z,0) =0 in [0, 1], (4.4.2)
u(0,t) = 0,u(l,t) =0 in (0,1],

where

4 2(1+z)? — (1 +2?) Fo cos(mx/2)
—2cos(mxw/4) 2.2¢l7® ’ T .
The solution of this system is not known. So, we apply the double mesh principle

see [5]) to compute the errors and the convergence rates. We calculate UN** and
(see [3]) p g

[2NAt/27 [2N.At/27

, for some constant 7. Note that for computing we use same
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Figure 4.1: Numerical solution of Example for e = 1075, g5 = 107* with
N =32, M =64 (left uy, right uy).
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Figure 4.2: Numerical solution of Example for e = 1075, g9 = 107" with
N =32, M =64 (left uy, right us).

UN,At

subdomain parameters o; and o, as with , but taking time stepping At/27

and mesh points in spatial direction to be 2N + 1. After computing U™N*! and

UNAY2 the error is computed by

N,At N,At 2N,At/27
E€1,62 - H U U

H@NvM
We fix €; by taking £; = 107", where n is a non-negative integer. We then calculate

EN.At N.At N At EVA
€1

= max{FE e 10-17 - » By 1g-n
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Figure 4.3: Numerical solution of Example for e = 1075, g5 = 107* with
N =32, M =64 (left uy, right uy).

Table 4.1: The errors Eé\lj’m and ENA? and the convergence rates g?{’m and o™VAt for
Example
e1=10" N=2° N =26 N=2" N =28 N =29

At =1/4 At =1/4? At =1/43 A=1/4* At =1/4°

n=1 2.19E-02 7.62E-03 2.16E-03 5.57E-04 1.40E-04
1.52 1.82 1.95 1.99

2 2.62E-02 8.52E-03 2.31E-03 5.91E-04 1.49E-04
1.62 1.88 1.97 1.99

3 2.83E-02 8.69E-03 2.33E-03 5.93E-04 1.49E-04
1.70 1.90 1.97 1.99

4 2.92E-02 8.98E-03 2.40E-03 6.12E-04 1.54E-04
1.70 1.90 1.97 1.99

5 3.07E-02 1.07E-02 3.19E-03 9.06E-04 2.47E-04
1.52 1.75 1.81 1.88

6 3.08E-02 1.07E-02 3.19E-03 9.06E-04 2.54E-04
1.52 1.75 1.81 1.83

7 3.08E-02 1.07E-02 3.19E-03 9.06E-04 2.54E-04
1.53 1.75 1.81 1.83

8 3.10E-02 1.09E-02 3.19E-03 9.06E-04 2.54E-04
1.51 1.78 1.81 1.83

ENAL 3.10E-02 1.09E-02 3.19E-03 9.06E-04 2.54E-04
oAt 1.51 1.78 1.81 1.83

ENAY — max Eg’m. We compute rates of

€1

After that uniform error is calculated by

convergence by

Qé\i LA IOgZ(EN At/EIZN At/?‘r) QN,At _ 10g2(EN’At/E2N7At/27).
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Table 4.2: Number of iterations taking e; = 10™8 for Example

N =2° N =27 N =28 N =29
At =1/42 At =1/43 A=1/4 At =1/4°

Il
[N}
oy

gg=10" N
At

—_
~
o~

o

0 ~1 O U LN — |
— o= R W W w0 o w|
— o N W R R WW
R R Bl
— =MD WOl O Ul
—H LD WO -1~ O

Table 4.3: The errors Eg’m and ENAt and the convergence rates Q?{’At and o™NA?t for
Example

e =10" N=2° N =26 N =27 N =28 N=2

At=1/2 At =1/22 At=1/23 A=1/2 At =1/2°

n=1 1.33E-02 8.53E-03 4.94E-03 2.71E-03 1.42E-03
0.64 0.79 0.87 0.93

2 1.66E-02 1.00E-02 5.56E-03 2.96E-03 1.53E-03
0.73 0.85 0.91 0.95

3 1.80E-02 1.04E-02 5.68E-03 2.99E-03 1.53E-03
0.80 0.87 0.93 0.96

4 1.90E-02 1.06E-02 5.74E-03 2.99E-03 1.53E-03
0.84 0.89 0.94 0.97

5 2.18E-02 1.21E-02 6.31E-03 3.19E-03 1.59E-03
0.85 0.94 0.98 1.00

6 2.18E-02 1.21E-02 6.31E-03 3.19E-03 1.59E-03
0.85 0.94 0.98 1.00

7 2.19E-02 1.21E-02 6.31E-03 3.19E-03 1.59E-03
0.85 0.94 0.98 1.00

8 2.24E-02 1.24E-02 6.31E-03 3.19E-03 1.59E-03
0.86 0.97 0.99 1.00

ENAL 2.24E-02 1.24E-02 6.31E-03 3.19E-03 1.59E-03
oAt 0.86 0.97 0.99 1.00

For 7 = 2, Table gives Eé\lf At and g?{ At corresponding to our method, for
various values of €; and N, and At. It also gives the uniform errors EV'2* and the
uniform convergence rates o2, We observe that the results in Table are well
in accordance with Theorem [4.3.3] Table gives, for fixed ¢; = 107% and different
values of 5 and N, At, the number of iterations needed for stopping the algorithm.
To see the influence of the error associated to the spatial discretization we divided
the time step size by four, as displayed in Table We also provide results in Table

by dividing the time step size by two. From this table the first order uniform
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convergence is observed, that is corresponding to the time discretization error. Next,

we consider a test example whose solution is known.

Example 4.4.2. Consider the following problem [35]

Ou— EPu+ Au=f in Q= x (0,1],
w(z,0) =0 in €, (4.4.3)
'U:(O, t) = gO(t)a u’<17 t) = gl(t) in (07 1]

(2 1\ L (h
(A7) - (2)

where fi1, f2, g, and g, are chosen in such a way that the solution of the problem

with

u = (uy,up)? is
uy(z,t) = t(p1(x) + da(x) — 2) + (w0 + 1)te™",

up(x,t) = (L — ") (¢n(x) — 1) + (1 = £)(¢2(z) — 1),

with
e~ t/VEi L om () Ve Lo
¢1<x>_ 1+€_1/\/a y = 1,4
The errors are computed using
EE]\IEA; = Hu — UN’AtHQN,M.

After that the errors EN At and ENAY are calculated as described previously. Then

N, At N, At

the convergence rates g, =" and o are calculated by

Qé\i LAt logQ(Eé\lf,At/EQN At/QT> QN,At _ logQ(EN’At/EzN’At/ZT),

for some constant 7. For 7 = 2, Table gives EN4* and 022" corresponding to
the method, for various values of €; and N, and At. It also gives the uniform errors
ENAt and the uniform convergence rates o2t Table gives, for fixed e, = 1078
and different values of €5 and N, At, the number of iterations needed for stopping
the iterative process. Taking 7 = 1, results are provided in Table 4.6, where we
observe the error corresponding to the time discretization. From these results we
observe that the the error associated to the time discretization is dominating in the
global error for this example. We next consider a test example in which the error

associated to the spatial discretization is dominating in the global error.
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Table 4.4: The errors Eé\lf’m and ENAY and the convergence rates gé\i’m and oAt for

Example
g6 =10" N=2 N =26 N =27 N =28 N=2

At =1/4 At =1/42 At =1/43 A=1/4* At =1/45

n=1 6.20E-02 1.77E-02 4.59E-03 1.16E-03 2.91E-04
1.81 1.94 1.99 2.00

2 8.32E-02 2.21E-02 5.72E-03 1.44E-03 3.62E-04
1.91 1.95 1.99 2.00

3 8.97E-02 2.38E-02 6.15E-03 1.55E-03 3.89E-04
1.91 1.95 1.99 2.00

4 9.20E-02 2.44E-02 6.31E-03 1.59E-03 3.99E-04
1.91 1.95 1.99 2.00

5 9.29E-02 2.46E-02 6.36E-03 1.60E-03 4.01E-04
1.91 1.95 1.99 2.00

6 9.31E-02 2.47E-02 6.39E-03 1.61E-03 4.04E-04
1.91 1.95 1.99 2.00

7 9.32E-02 2.48E-02 6.40E-03 1.61E-03 4.04E-04
1.91 1.95 1.99 2.00

8 9.33E-02 2.48E-02 6.41E-03 1.62E-03 4.05E-04
1.91 1.95 1.99 2.00

ENAL 9.33E-02 2.48E-02 6.41E-03 1.62E-03 4.05E-04
oAt 1.91 1.95 1.99 2.00

Table 4.5: Number of iterations taking e; = 1078 for Example

gg=10" N=2° N =2° N =27 N =28 N =29
At =1/4 At = 1/4? At =1/43 A=1/4* At =1/4°
n=>0 2 3 4 b} 6
1 2 3 3 4 5
2 2 3 4 5 6
3 2 3 4 5 6
4 3 4 4 ) 6
5 3 3 3 3 3
6 2 2 2 2 2
7 1 1 1 1 1
8 1 1 1 1 1
Example 4.4.3. Consider the following problem [35]
Ou— ED*u+ Au=F inQ:=Qx(0,1], (1.4.4)
u(x,0) =0 inQ, u0,t)=gy(t), u(l,t)=g,t) in(0,1], o

where

A 54 e—l/(tsin(mc) _ (1 + (.1'2 _ 1’4)252) f: 0
_(1 + (LUQ _ $4)t2) 54+ e—l/(tsin(wx) ’ t2€_1/(x_m2) )
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Table 4.6: The errors Eé\lf’m and ENAt and the convergence rates g?{’m and VAt for

Example
g5 =10" N=2° N =26 N =27 N =28 N =29

At =1/2 At =1/22 At =1/23 A=1/2 At =1/2°

n=1 1.08E-01 6.21E-02 3.37E-02 1.77E-02 9.06E-03
0.80 0.88 0.93 0.96

2 1.61E-01 8.32E-02 4.23E-02 2.21E-02 1.13E-02
0.95 0.98 0.94 0.97

3 1.72E-01 8.97E-02 4.57E-02 2.38E-02 1.22E-02
0.94 0.97 0.94 0.97

4 1.76E-01 9.20E-02 4.70E-02 2.45E-02 1.25E-02
0.94 0.97 0.94 0.97

5 1.78E-01 9.29E-02 4.75E-02 2.47E-02 1.26E-02
0.94 0.97 0.94 0.97

6 1.78E-01 9.32E-02 4.76E-02 2.48E-02 1.27E-02
0.94 0.97 0.94 0.97

7 1.78E-01 9.33E-02 4.77E-02 2.48E-02 1.27E-02
0.93 0.97 0.94 0.97

8 1.78E-01 9.34E-02 4.77E-02 2.48E-02 1.27E-02
0.93 0.97 0.94 0.97

ENAL 1.78E-01 9.34E-02 4.77E-02 2.48E-02 1.27E-02
oAt 0.93 0.97 0.94 0.97

Table 4.7: Number of iterations taking e; = 10~® for Example m

gg=10"" N =2° N =2° N =27 N =28 N =29
At =1/4 At =1/4? At =1/43 A=1/4* At =1/4°

n=2 b} 6 7 8 9

3 5 6 6 7 7

4 4 5 4 5 5

5 2 2 2 2 2

6 1 1 1 1 1

7 1 1 1 1 1

8 1 1 1 1 1

go(t) = (sin®(t), )7, and g, () = (1 — e™*)*, (1 — cos(t))*)".

The exact solution to this test example is not known, so we compute the errors
and convergence rates using the double mesh principle similar to Example[4.4.1] The
results are displayed in Tables 4.9 these results confirm that the error associated

to the spatial discretization is dominating in the global error, in contrast to Examples

4.4.1) and 4.4.2l In summary, from the results presented for Examples [4.4.144.4.3]

we observe that the method is uniformly convergent of first order in time direction
and almost second order in spatial direction, which is in line with our theoretical

findings. Further, the number of iterations needed for getting the desired accuracy
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Table 4.8: The errors Eé\lf’m and ENAY and the convergence rates gé\i’m and oAt for

Example
e =10" N=2° N =26 N =27 N =28 N=2°

At =1/4 At =1/42 At =1/43 A=1/4* At =1/45

n =2 1.58E-02 4.39E-03 1.12E-03 2.83E-04 7.08E-05
1.85 1.97 1.99 2.00

3 1.73E-02 4.77E-03 1.23E-03 3.0E-04 7.71E-05
1.86 1.96 1.99 2.00

4 1.91E-02 5.68E-03 1.58E-03 4.36E-04 1.20E-04
1.75 1.84 1.86 1.86

5 2.45E-02 1.06E-02 3.59E-03 1.20E-03 3.62E-04
1.20 1.57 1.58 1.73

6 2.48E-02 1.07E-02 3.61E-03 1.21E-03 3.78E-04
1.21 1.57 1.58 1.67

7 2.48E-02 1.07E-02 3.61E-03 1.21E-03 3.78E-04
1.21 1.57 1.58 1.67

8 2.48E-02 1.07E-02 3.61E-03 1.21E-03 3.78E-04
1.21 1.57 1.58 1.67

ENAL 2.48E-02 1.07E-02 3.61E-03 1.21E-03 3.78E-04
oAt 1.21 1.57 1.58 1.67

Table 4.9: The errors Eg’m and ENA? and the convergence rates Q?{’At and VAt for

Example [£.4.3]
e =10" N =2 N =26 N =27 N =28 N=2°

At =1/2° At =1/25 At =1/27 A=1/28 At =1/2°

n =2 1.98E-03 8.57E-04 3.96E-04 1.91E-04 9.39E-05
1.21 1.11 1.05 1.02

3 3.32E-03 1.22E-03 4.91E-04 2.15E-04 1.00E-04
1.44 1.31 1.19 1.10

4 7.98E-03 2.60E-03 9.96E-04 3.86E-04 1.55E-04
1.62 1.39 1.37 1.32

5 1.53E-02 1.05E-02 4.16E-03 1.37E-03 3.74E-04
0.55 1.33 1.60 1.87

6 1.54E-02 1.05E-02 4.16E-03 1.44E-03 4.73E-04
0.55 1.33 1.53 1.61

7 1.54E-02 1.05E-02 4.16E-03 1.44E-03 4.73E-04
0.55 1.33 1.53 1.61

8 1.54E-02 1.05E-02 4.16E-03 1.44E-03 4.73E-04
0.55 1.33 1.53 1.61

ENA 1.54E-02 1.05E-02 4.16E-03 1.44E-03 4.73E-04
oAt 0.55 1.33 1.53 1.61

is small.
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Figure 4.4: Decomposition of the computational domain.
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Figure 4.5: Loglog plot of the maximum pointwise errors for Examples and
are depicted in the left and right subfigures, respectively.

In Figure 4.5 we show loglog plot of the maximum pointwise errors vs N for
both the examples. The slopes of these plots also validate the theoretically obtained
convergence result. The used CPU time in seconds for the proposed method for
Examples and is given in Table These results are computed using
MATLAB software installed on a laptop equipped with an Intel(R) Core(TM) i3-
3227U CPU with 1.90GHz speed and 8 GB RAM running on a 64 bit windows8

operating system.
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Table 4.10: The used CPU time in seconds for Examples [4.4.1] and [4.4.2 with &; =
1078, e =107".

N=2° N =2° N =27 N =28
At =0.25 | At =0.25/4 | At =0.25/4% | At =0.25/43
Example 4.4.1/ | 0.297093 0.462029 2.127035 41.279690
Example 4.4.2/ | 0.430715 1.004809 6.124289 56.153489

4.5 Conclusions

In this chapter, we have designed and analyzed a domain decomposition method
of Schwarz waveform relaxation type with overlap for solving singularly perturbed
parabolic reaction-diffusion systems with distinct small parameters. The uniform
convergence analysis is done using some auxiliary problems. The method is shown
to be uniformly convergent of almost second order in space and first order in time.
In addition, we perform some numerical experiments which support the theoretical
error estimates. Moreover, numerically we observed that the convergence can be
achieved within one iteration when the perturbation parameters are small and of

same magnitude.



