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A robust domain decomposition method for

singularly perturbed parabolic semilinear

reaction-diffusion problems

We consider the following singularly perturbed parabolic semilinear reaction-diffusion

problem
L u(x, t) = ut − εuxx + f(x, t, u) = 0, for (x, t) ∈ Q = Ω× (0, T ], Ω = (0, 1),

u(x, 0) = ϕ(x), for x ∈ Ω,

u(0, t) = g0(t), u(1, t) = g1(t), for t ∈ (0, T ],

(3.0.1)

where ε ∈ (0, 1] is the perturbation parameter. We assume that

fu(x, t, u) ≥ α > 0 for all (x, t, u) ∈ Q× R. (3.0.2)

Under suitable compatibility and regularity conditions on the data, problem (3.0.1)

has a unique solution which exhibits boundary layers near x = 0 and x = 1; see

[67, Chapt. 5, Theorem 6.4]. Problems of type (3.0.1) have found applications

in diverse areas such as chemical kinetics, nematic liquid crystal cell, and many

others [37,68–70].

Following [71], the exact solution can be written as u = v + w, where

||∂sx∂rt u||Q ≤ C(1 + ε−s/2(e−x
√
α/ε + e−(1−x)

√
α/ε)) for 0 ≤ s+ 2r ≤ 4, (3.0.3)

and

||∂sxv||Q ≤ C(1 + ε(2−s)/2), (3.0.4)
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|∂sxw(x, t)| ≤ Cε−s/2
(

exp(−x
√
α/ε) + exp(−(1− x)

√
α/ε)

)
, (3.0.5)

for (x, t) ∈ Q, s = 0, . . . , 4.

In this chapter, we aim to design and analyze a domain decomposition method of

SWR type for problem (3.0.1). We first decompose the domain into three overlapping

subdomains, then iteratively solve sub-problems posed on each subdomain. These

sub-problems are formed using the central difference and the backward difference on

a uniform mesh in space and time direction, respectively, and the same initial value

of the governing equation, but with suitably designed boundary conditions along the

interfacial boundaries. The sub-problems are solved iteratively until convergence is

achieved. The analysis of uniform convergence is made in two steps, splitting the

contribution to the global error from the iteration and the discretization errors. The

approximations generated by the algorithm are proved to be almost second order

accurate in space and first order accurate in time. More precisely, we show that only

one iteration is necessary for the algorithm to reach the desired accuracy for smaller

values of the perturbation parameter. At the end, some numerical results are given

in support of the theory.

3.1 Domain decomposition method

To construct the algorithm, we discretize the continuous problem on three overlap-

ping subdomains Qp = Ωp × (0, T ], p = `,m, r, where

Ω` = (0, 2σε), Ωm = (σε, 1− σε), Ωr = (1− 2σε, 1),

and the transition parameter σε is choosen as follows:

σε = min

{
1

4
, 2

√
ε

α
lnN

}
. (3.1.1)

On each subdomain Qp = [a, b] × [0, T ], we introduce a mesh Q
N,M

p = Ω
N

p × ωM ,

where Ω
N

p = {xi = i∆x, i = 0, 1 . . . , N, ∆x = (b− a)/N} and ωM = {tj = j∆t, j =

0, 1 . . . ,M, ∆t = T/M} with QN,M
p = Q

N,M

p ∩ Qp, ΩN
p = Ω

N

p ∩ Ωp and ωM = ωM ∩
(0, T ]. Letting N = 2n, n ≥ 2, on each subdomain QN,M

p , p = `,m, r, we consider

the following discretization

[L N,M
p Up]i,j := [δtUp]i,j − ε[δ2

xUp]i,j + f(xi, tj,Up;i,j) = 0, (3.1.2)
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where

[δ2
xUp]i,j =

1

h2
p

(Up;i+1,j − 2Up;i,j + Up;i−1,j),

and

[δtUp]i,j =
1

∆t
(Up;i,j+1 − Up;i,j).

We now define the algorithmic procedure as follows.

Step 1. Initial Approximation: The algorithm starts with the following initial ap-

proximation

U[0](xi, tj) =



0, 0 < xi < 1, 0 < tj ≤ T,

u(xi, 0), for xi ∈ Ω,

u(0, tj), for tj ∈ (0, T ],

u(1, tj), for tj ∈ (0, T ].

(3.1.3)

Step 2. For each k ≥ 1, the algorithm constructs kth approximation U
[k]
p , p = `,m, r,

by solving following problems
[L N,M

` U
[k]
` ]i,j = 0 for (xi, tj) ∈ QN,M

` ,

U
[k]
` (xi, 0) = ϕ(xi) for xi ∈ Ω

N

` ,

U
[k]
` (0, tj) = g0(tj),U

[k]
` (2σε, tj) = TtjU[k−1](2σε, tj) for tj ∈ ωM ,

[L N,M
r U

[k]
r ]i,j = 0 for (xi, tj) ∈ QN,M

r ,

U
[k]
r (xi, 0) = ϕ(xi) for xi ∈ Ω

N

r ,

U
[k]
r (1− 2σε, tj) = TtjU[k−1](1− 2σε, tj),U

[k]
r (1, tj) = g1(tj) for tj ∈ ωM ,

[L N,M
m U

[k]
m ]i,j = 0 for (xi, tj) ∈ QN,M

m ,

U
[k]
m (xi, 0) = ϕ(xi) for xi ∈ Ω

N

m,

U
[k]
m (σε, tj) = TtjU

[k]
` (σε, tj),U

[k]
m (1− σε, tj) = TtjU

[k]
r (1− σε, tj) for tj ∈ ωM ,

where symbol TtjU[k] denotes the piecewise linear interpolant at time level tj on

Ω
N

:= (Ω
N

` \Ωm) ∪ Ω
N

m ∪ (Ω
N

r \Ωm).

Step 3. The solution to problem (3.0.1) can now be obtained by combining the

solutions obtained in Step 2 in the following way

U[k](xi, tj) =


U

[k]
` (xi, tj), (xi, tj) ∈ Q

N,M

` \Qm,

U
[k]
m (xi, tj), (xi, tj) ∈ Q

N,M

m ,

U
[k]
r (xi, tj), (xi, tj) ∈ Q

N,M

r \Qm.

(3.1.4)
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Step 4. Termination: Stop the iterative process if condition

||U[k] − U[k−1]||
Q
N,M ≤ tol (3.1.5)

is true; otherwise return to Step 2 and continue the iterative process until the toler-

ance criterion is not satisfied.

3.2 Error Analysis

In this section, we seperately analyze the contribution to the global error from dis-

cretization error and iteration error. The analysis is based on the following auxiliary

problems
[L N,M

` Ũ`]i,j = 0 for (xi, tj) ∈ QN,M
` ,

Ũ`(xi, 0) = u(xi, 0) for xi ∈ Ω
N

` ,

Ũ`(0, tj) = u(0, tj), Ũ`(2σε, tj) = u(2σε, tj) for tj ∈ ωM ,
[L N,M

r Ũr]i,j = 0 for (xi, tj) ∈ QN,M
r ,

Ũr(xi, 0) = u(xi, 0) for xi ∈ Ω
N

r ,

Ũr(1− 2σε, tj) = u(1− 2σε, tj), Ũr(1, tj) = u(1, tj) for tj ∈ ωM ,
[L N,M

m Ũm]i,j = 0 for (xi, tj) ∈ QN,M
m ,

Ũm(xi, 0) = u(xi, 0) for xi ∈ Ω
N

m,

Ũm(σε, tj) = u(σε, tj), Ũm(1− σε, tj) = u(1− σε, tj) for tj ∈ ωM ,

where L N,M
p is as defined in previous section, and u is the exact solution of (3.0.1).

Next we define

Ũ(xi, tj) =


Ũ`(xi, tj), (xi, tj) ∈ Q

N,M

` \Qm,

Ũm(xi, tj), (xi, tj) ∈ Q
N,M

m ,

Ũr(xi, tj), (xi, tj) ∈ Q
N,M

r \Qm.

(3.2.1)

We use the following notation in our analysis.

ξσε = max

{
max
tj∈ωM

|(Ũ` − Ũm)(σε, tj)|, max
tj∈ωM

|(Ũr − Ũm)(1− σε, tj)|
}
,

ξ2σε = max

{
max
tj∈ωM

|(Ũ` − Ũm)(2σε, tj)|, max
tj∈ωM

|(Ũr − Ũm)(1− 2σε, tj)|
}
,

ξ[k] = max{max
tj∈ωM

|(Ũ` − TtjU[k−1])(2σε, tj)|, max
tj∈ωM

|(Ũr − TtjU[k−1])(1− 2σε, tj)|},

η[k] = max{||Ũ` − U[k]||
Q
N,M
` \Qm

, ||Ũm − U[k]||
Q
N,M
m

, ||Ũr − U[k]||
Q
N,M
r \Qm

}.
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Lemma 3.2.1. Let u be the exact solution of problem (3.0.1) and Ũp, p = `,m, r,

be the solutions of the auxiliary problems defined in this section. Then

||u− Ũp||QN,Mp
≤ C(∆t+N−2 ln2N), p = `,m, r. (3.2.2)

Proof. For (xi, tj) ∈ QN,M
` , the error function η`(xi, tj) = u(xi, tj)−Ũ`(xi, tj) satisfies

[δtη`]i,j − ε[δ2
xη`]i,j + (f(xi, tj, ui,j)− f(xi, tj, Ũ`;i,j)) = [(δt − ∂t)u]i,j + ε[(∂2

x − δ2
x)u]i,j

(3.2.3)

with {
η`(xi, 0) = 0 for xi ∈ Ω

N

` ,

η`(0, tj) = 0, η`(2σε, tj) = 0 for tj ∈ ωM .

The error equation (3.2.3) can be written in the alternative form

[L N,M
` η`]i,j := [δtη`]i,j − ε[δ2

xη`]i,j +

(∫ 1

0

fu(xi, tj, Ũ`;i,j + s(ui,j − Ũ`;i,j))ds

)
η`;i,j

= [(δt − ∂t)u]i,j + ε[(∂2
x − δ2

x)u]i,j,

or [L N,M
` η`]i,j := [δtη`]i,j − ε[δ2

xη`]i,j + [a`η`]i,j = [(δt− ∂t)u]i,j + ε[(∂2
x− δ2

x)u]i,j,

where a`;i,j =
∫ 1

0
fu(xi, tj, Ũ`;i,j +s(ui,j− Ũ`;i,j))ds. Now using Taylor expansions and

(3.0.3) with h` ≤ C
√
εN−1 lnN, we get∣∣∣[L N,M

` η`]i,j

∣∣∣ ≤ 1

2
(tj − tj−1)

∥∥∂2
t u(xi, .)

∥∥
[tj−1,tj ]

+
ε

12
h2
`

∥∥∂4
xu(., tj)

∥∥
[xi−1,xi+1]

≤ C(∆t+N−2 ln2N).

So, applying the discrete maximum principle for L N,M
` to the mesh functions C(∆t+

N−2 ln2N)± η`, it holds

||u− Ũ`||QN,M`
≤ C(∆t+N−2 ln2N).

In the same way, we get

||u− Ũr||QN,Mr
≤ C(∆t+N−2 ln2N).

Next, we obtain estimate for ||u− Ũm||QN,Mm
. Defining ηm;i,j = ui,j − Ũm;i,j, we have

the following error equation

[L N,M
m ηm]i,j := [δtηm]i,j − ε[δ2

xηm]i,j + [amηm]i,j
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= [(δt − ∂t)u]i,j + ε[(∂2
x − δ2

x)u]i,j, (3.2.4)

where am;i,j =
∫ 1

0
fu(xi, tj, Ũm;i,j+s(ui,j−Ũm;i,j))ds. Since σε = min

{
1
4
, 2
√

ε
α

lnN
}
,

we consider two cases: 2
√

ε
α

lnN ≥ 1/4 and 2
√

ε
α

lnN < 1/4. First consider

2
√

ε
α

lnN ≥ 1/4. Then ε−1 ≤ C ln2N and hm = 1/(2N). So, using Taylor ex-

pansions and (3.0.3) it follows, from (3.2.4), that

∣∣[L N,M
m ηm]i,j

∣∣ ≤ C(∆t+N−2 ln2N) for (xi, tj) ∈ QN,M
m .

In the case when 2
√

ε
α

lnN < 1/4, the estimate on the first term of the right-hand

side of equation (3.2.4) is obtained using Taylor expansion and (3.0.3). That is, for

(xi, tj) ∈ QN,M
m , |[(∂t − δt)u]i,j| ≤ C∆t. For the second term, use the decomposition

of u = v + w and Taylor expansions to get

ε
∣∣[(∂2

x − δ2
x)u]i,j

∣∣ ≤ ε
∣∣[(∂2

x − δ2
x)v]i,j

∣∣+ ε
∣∣[(∂2

x − δ2
x)w]i,j

∣∣
≤ Cεh2

m

∥∥∂4
xv(., tj)

∥∥
[xi−1,xi+1]

+ Cε
∥∥∂2

xw(., tj)
∥∥

[xi−1,xi+1]

≤ CN−2 + C
∥∥∥exp(−x

√
α/ε) + exp(−(1− x)

√
α/ε
∥∥∥

[xi−1,xi+1]

≤ CN−2 + C(e−σε
√
α/ε + e−(1−(1−σε))

√
α/ε)

≤ CN−2 + 2e−σε
√
α/ε

= CN−2,

where we have used (3.0.4), (3.0.5) and hm ≤ CN−1. Hence, for (xi, tj) ∈ QN,M
m , we

have ∣∣∣[L N,M
m (u− Ũm)]i,j

∣∣∣ ≤ C(∆t+N−2 ln2N).

So, applying the discrete maximum principle for L N,M
m to the mesh functions C(∆t+

N−2 ln2N)± ηm, it follows that

||u− Ũm||QN,Mm
≤ C(∆t+N−2 ln2N).

Consider the following discrete problems
[δtZp]i,j − ε[δ2

xZp]i,j + [apZp]i,j = 0, for (xi, tj) ∈ QN,M
p ,

Zp(a, tj) = z0, Zp(b, tj) = z1, for tj ∈ ωM ,
Zp(xi, 0) = 0, for xi ∈ Ω

N

p ,

(3.2.5)
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
[δtψ

±]i,j − ε[δ2
xψ
±]i,j + [αψ±]i,j = 0, for (xi, tj) ∈ QN,M

p ,

ψ−p (a, tj) = 1, ψ−p (b, tj) = 0, ψ+
p (a, tj) = 0, ψ+

p (b, tj) = 1, for tj ∈ ωM ,
ψ−p (xi, 0) =

ϕN1 ϕ
i
2−ϕi1ϕN2

ϕN1 −ϕN2
, ψ+

p (xi, 0) =
ϕi1−ϕi2
ϕN1 −ϕN2

, for xi ∈ Ω
N

p ,

(3.2.6)

where ϕi, i = 1, 2, satisfy ϕ1 = λ1 + λ2, ϕ2 = λ1 − λ2 with

λ1 = 1 +

(
σε
N

√
α

ε

)2

, λ2 = 2

(
σε
N

√
α

ε

)√
1 +

(
σε
N

√
α

ε

)2

,

and ap(xi, tj) ≥ α > 0, for (xi, tj) ∈ Q
N,M

p , p = `,m, r. It is easy to verify using the

discrete maximum principle that 0 ≤ ψ±p (xi, tj) ≤ 1, (xi, tj) ∈ Q
N,M

p .

Lemma 3.2.2. Suppose that Zp(xi, tj) and ψ±p (xi, tj) are the solutions to the discrete

problems (3.2.5) and (3.2.6) respectively. Then

|Zp(xi, tj)| ≤ |z0|ψ−p (xi, tj) + |z1|ψ+
p (xi, tj), (xi, tj) ∈ Q

N,M

p .

Proof. Suppose that Wp solves

[δtWp]i,j − ε[δ2
xWp]i,j + [αWp]i,j = 0, (xi, tj) ∈ QN,M

p ,{
Wp(a, tj) = |z0|, Wp(b, tj) = |z1|, for tj ∈ ωM ,
Wp(xi, 0) = |z0|ϕ

N
1 ϕ

i
2−ϕi1ϕN2

ϕN1 −ϕN2
+ |z1| ϕ

i
1−ϕi2

ϕN1 −ϕN2
, for xi ∈ Ω

N

p .
(3.2.7)

Then Wp can be written as

Wp;i,j = ψ−p;i,j|z0|+ ψ+
p;i,j|z1|, xi ∈ Q

N,M

p .

This can be verified by direct substitution. Using the discrete maximum principle,

it follows that

|Zp;i,j| ≤Wp;i,j, xi ∈ Q
N,M

p .

This completes the proof.

In the next theorem we show that, when σε = 2
√

ε
α

lnN, only one iteration is required

for the algorithm to converge.

Theorem 3.2.3. Let u be solution of problem (3.0.1) and U[1] be the first iterate

generated by the algorithm. If σε = 2
√

ε
α

lnN, then

||u− U[1]||
Q
N,M ≤ C(∆t+N−2 ln2N).

Proof. Introducing the mesh function η
[1]
` (xi, tj) = (Ũ` − U

[1]
` )(xi, tj), we write the
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error equation of η
[1]
` :

[δtη
[1]
` ]i,j − ε[δ2

xη
[1]
` ]i,j + [a

[1]
` η

[1]
` ]i,j = 0, (xi, tj) ∈ QN,M

` (3.2.8)

with {
η

[1]
` (xi, 0) = 0, for xi ∈ Ω

N

` ,

η
[1]
` (0, tj) = 0, |η[1]

` (2σε, tj)| ≤ ξ[1], for tj ∈ ωM ,
(3.2.9)

where a
[1]
`;i,j =

∫ 1

0
fu(xi, tj,U

[1]
`;i,j + s(Ũ`;i,j − U

[1]
`;i,j))ds. Now, using Lemma 3.2.2, it

follows that, for (xi, tj) ∈ Q
N,M

` ,

|η[1]
` (xi, tj)| ≤ ξ[1]ψ+

` (xi, tj),

where ψ+
` solves (3.2.6) and has the following form

ψ+
` (xi, tj) =

(λ1 + λ2)i − (λ1 − λ2)i

(λ1 + λ2)N − (λ1 − λ2)N
.

Thus, for (xi, tj) ∈ Q
N,M

` \Qm, we have

|η[1]
` (xi, tj)| ≤ ξ[1] (λ1 + λ2)N/2 − (λ1 − λ2)N/2

(λ1 + λ2)N − (λ1 − λ2)N

=
ξ[1]

(λ1 + λ2)N/2 + (λ1 − λ2)N/2
≤ ξ[1]

(λ1 + λ2)N/2
.

Further, for σε = 2
√
ε lnN/

√
α, it follows that

(
1 +

σε
N

√
α

ε

)−N
=

(
1 + 2

lnN

N

)−N
≤ 4N−2, N ≥ 1 as λ2 ≥ 2

(
σε
N

√
α

ε

)
,

where the arguments in [4, Lemma 5.1] are used to prove the last inequality. Thus,

we have |η[1]
` (xi, tj)| ≤ 4ξ[1]N−2 for (xi, tj) ∈ Q

N,M

` \Qm. Hence

||Ũ` − U
[1]
` ||QN,M` \Qm

≤ 4ξ[1]N−2. (3.2.10)

Likewise

||Ũr − U[1]
r ||QN,Mr \Qm

≤ 4ξ[1]N−2. (3.2.11)

To estimate ||Ũm − U
[1]
m ||QN,Mm

, we consider the mesh function η
[1]
m (xi, tj) = (Ũm −
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U
[1]
m )(xi, tj), which solves

[δtη
[1]
m ]i,j − ε[δ2

xη
[1]
m ]i,j + [a[1]

m η
[1]
m ]i,j = 0, (xi, tj) ∈ QN,M

m , (3.2.12)

where a
[1]
m;i,j =

∫ 1

0
fu(xi, tj,U

[1]
m;i,j+s(Ũm;i,j−U

[1]
m;i,j))ds.Note that η

[1]
m (xi, 0) = 0 for xi ∈

Ω
N

m, and the following inequalities are fulfilled

|η[1]
m (σε, tj)| = |(Ũm − TtjU

[1]
` )(σε, tj)| ≤ |(Ũm − Ũ`)(σε, tj)|+ |(Ũ` − U

[1]
` )(σε, tj)|

≤ ξσε + 4ξ[1]N−2 for tj ∈ ωM ,

and |η[1]
m (1− σε, tj)| = |(Ũm − TtjU[1]

r )(1− σε, tj)|

≤ |(Ũm − Ũr)(1− σε, tj)|+ |(Ũr − U[1]
r )(1− σε, tj)|

≤ ξσε + 4ξ[1]N−2 for tj ∈ ωM ,

as (σε, tj) ∈ Q
N,M

` and (1 − σε, tj) ∈ Q
N,M

r . Thus, an application of Lemma 3.2.2

leads to the estimate

||Ũm − U[1]
m ||QN,Mm

≤ ξσε + 4ξ[1]N−2. (3.2.13)

Hence

η[1] ≤ ξσε + 4ξ[1]N−2. (3.2.14)

Note that ξ[1] ≤ C. Furthermore, since (σε, tj) ∈ Q
N,M

` and (1 − σε, tj) ∈ Q
N,M

r , it

follows, from Lemma 3.2.1, that ξσε ≤ C(∆t+N−2 ln2N).

Using the triangle inequality, we write

||u− U[1]||
Q
N,M ≤ ||u− Ũ||

Q
N,M + ||Ũ− U[1]||

Q
N,M .

Hence, using (3.2.14) and Lemma 3.2.1 we have the proof.

In the next theorem, we establish uniform convergence of the iterates generated

by the algorithm to the exact solution of problem (3.0.1) for σε = 1/4.

Theorem 3.2.4. Let u be the exact solution of (3.0.1) and U[k] be the kth iterate

generated by the algorithm. If σε = 1/4, then

||u− U[k]||
Q
N,M ≤ C2−k + C(∆t+N−2 ln2N). (3.2.15)

Proof. Consider the two mesh functions ψ±` (xi, tj) = xi
2σε
ξ[1] ± η[1]

` (xi, tj), where η
[1]
`
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satisfies (3.2.8)-(3.2.9). Then, it follows from (3.2.9) that ψ±` satisfy the inequalities{
ψ±` (xi, 0) ≥ 0, for xi ∈ Ω

N

` ,

ψ±` (0, tj) = 0, ψ±` (2σε, tj) ≥ 0, for tj ∈ ωM .

The discrete maximum principle on Q
N,M

` then yields

|η[1]
` (xi, tj)| ≤

xi
2σε

ξ[1] for (xi, tj) ∈ Q
N,M

` .

This implies

||Ũ` − U
[1]
` ||QN,M` \Qm

≤ ξ[1]

2
, as xi ≤ σε. (3.2.16)

Analogously, for all (xi, tj) ∈ Q
N,M

r \Qm,

||Ũr − U[1]
r ||QN,Mr \Qm

≤ ξ[1]

2
. (3.2.17)

We are left to find the estimate for ||Ũm−U
[1]
m ||QN,Mm

.With (3.2.12), we have η
[1]
m (xi, 0) =

0, for xi ∈ Ω
N

m. Using the estimates (3.2.16)-(3.2.17) we get

|η[1]
m (σε, tj)| = |(Ũm − TtjU

[1]
` )(σε, tj)| ≤ |(Ũm − Ũ`)(σε, tj)|+ |(Ũ` − U

[1]
` )(σε, tj)|

≤ ξσε +
ξ[1]

2
for tj ∈ ωM ,

and |η[1]
m (1− σε, tj)| = |(Ũm − TtjU[1]

r )(1− σε, tj)|

≤ |(Ũm − Ũr)(1− σε, tj)|+ |(Ũr − U[1]
r )(1− σε, tj)|

≤ ξσε +
ξ[1]

2
for tj ∈ ωM ,

as (σε, tj) ∈ Q
N,M

` and (1−σε, tj) ∈ Q
N,M

r . Applying the discrete maximum principle

on Q
N,M

m , we get

||Ũm − U[1]
m ||QN,Mm

≤ ξσε +
ξ[1]

2
. (3.2.18)

Now, we have to find a bound on ξ[2] to estimate η[2]. For σε = 1/4, (2σε, tj), (1 −
2σε, tj) ∈ Q

N,M

m . Thus

|(Ũ` − TtjU[1])(2σε, tj)| ≤ |(Ũ` − Ũm)(2σε, tj)|+ |(Ũm − U[1])(2σε, tj)|

≤ ξ2σε + ξσε +
ξ[1]

2
for tj ∈ ωM ,
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|(Ũr − TtjU[1])(1− 2σε, tj)| = |(Ũr − Ũm)(1− 2σε, tj)|+ |(Ũm − U[1])(1− 2σε, tj)|

≤ ξ2σε + ξσε +
ξ[1]

2
for tj ∈ ωM .

Therefore ξ[2] ≤ ξ2σε + ξσε + ξ[1]

2
for tj ∈ ωM , and so

max{η[1], ξ[2]} ≤ λε +
ξ[1]

2
, λε = ξ2σε + ξσε .

Repetition of the previous arguments leads to

max{η[k], ξ[k+1]} ≤ λε +
ξ[k]

2
.

It is now easy to see that

ξ[k] ≤ 2λε + 2−(k−1)ξ[1].

Hence

η[k] ≤ 2λε + 2−kξ[1]. (3.2.19)

Note that ξ[1] ≤ C. Also, since (2σε, tj), (1 − 2σε, tj) ∈ Q
N,M

m , and (σε, tj) ∈ Q
N,M

`

and (1−σε, tj) ∈ Q
N,M

r , it follows, from Lemma 3.2.1, that λε ≤ C(∆t+N−2 ln2N).

Finally, combining (3.2.19) and Lemma 3.2.1, as in the previous theorem, we get the

required result.

3.3 Numerical Experiments

In this section, we provide the numerical results for two test problems to support

the findings of the previous section. In our experiments, we choose tol = N−2 ln2N.

Further, we denote the final computed solution by UN,∆t.

Example 3.3.1. Consider the following singularly perturbed parabolic semilinear

reaction-diffusion problem
ut(x, t)− εuxx(x, t) = exp(−1)− exp(−u), (x, t) ∈ Q := Ω× (0, 1],

u(x, t) = 0, (x, t) ∈ [0, 1]× {0},
u(0, t) = 0, u(1, t) = 0, t ∈ (0, 1].

(3.3.1)

As the exact solution of problem (3.3.1) is unknown, we use the double mesh

principle to estimate the maximum pointwise errors EN,∆t
ε = ||UN,∆t−U2N,∆t/4||

Q
N,M ,

where U2N,∆t/4 denote the numerical approximation at grid point (xi, tj) on mesh

having time step ∆t/4 and 2N spatial mesh intervals in each subdomain.
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Table 3.1: Errors EN,∆tε and EN,∆t, and convergence rates ρN,∆t for Example 3.3.1.

ε N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

10−1 2.15E-02 6.38E-03 1.67E-03 4.24E-04 1.06E-04
10−2 2.08E-02 5.74E-03 1.48E-03 3.72E-04 9.30E-05
10−3 2.13E-02 5.98E-03 1.54E-03 3.88E-04 9.72E-05
10−4 2.13E-02 6.02E-03 1.58E-03 4.10E-04 1.06E-04
10−5 2.13E-02 6.02E-03 1.58E-03 4.10E-04 1.06E-04
10−6 2.13E-02 6.02E-03 1.58E-03 4.10E-04 1.06E-04
10−7 2.13E-02 6.02E-03 1.58E-03 4.10E-04 1.06E-04
10−8 2.13E-02 6.02E-03 1.58E-03 4.10E-04 1.06E-04
EN,∆t 2.13E-02 6.02E-03 1.58E-03 4.10E-04 1.06E-04
ρN,∆t 1.82 1.93 1.95 1.95

Table 3.2: Number of iterations required by the algorithm to converge for Example 3.3.1.

ε N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

10−1 5 5 6 6 7
10−2 3 4 4 5 6
10−3 1 1 1 1 1
10−4 1 1 1 1 1
10−5 1 1 1 1 1
10−6 1 1 1 1 1
10−7 1 1 1 1 1
10−8 1 1 1 1 1

We now calculate the uniform error for various values of N and ∆t, by EN,∆t =

max
ε

EN,∆t
ε , and corresponding rates of convergence are calculated by

ρN,∆t = log2

(
EN,∆t/E2N,∆t/4

)
.

The errors EN,∆t
ε , EN,∆t and rates of uniform convergence ρN,∆t that are com-

puted for different values of ε, N, ∆t are presented in Table 3.1. From it, one

can observe the monotonically decreasing behavior of the maximum pointwise er-

rors as N increases, ∆t decreases and ε remains the same, which confirm that the

method is convergent. Further, the last two rows of the table show that the method

is parameter-uniform. Table 3.2 displays the iteration counts that are needed for

the algorithm to converge. From it, one can see that only one iteration is necessary

to achieve prescribed accuracy for the method when the perturbation parameter is

small.

Example 3.3.2. Consider the following singularly perturbed parabolic semilinear
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reaction-diffusion problem
ut(x, t)− εuxx(x, t) + exp(u(x, t)) = f(x, t) (x, t) ∈ Q := Ω× (0, 1],

u(x, t) = φ(x) 0 < x < 1,

u(0, t) = g0(t), u(1, t) = g1(t) 0 ≤ t ≤ 1,

(3.3.2)

where f, φ, g0 and g1 are calculated from the exact solution

u(x, t) = (1− e−t)
(
e−x/

√
ε + e−(1−x)/

√
ε

1 + e−1/
√
ε

− cos2(πx)

)
.

Table 3.3: Errors EN,∆tε and EN,∆t, and convergence rates ρN,∆t for Example 3.3.2.

ε N = 32 N = 64 N = 128 N = 256 N = 512

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

10−1 6.79E-03 1.87E-03 4.78E-04 1.20E-04 3.01E-05
10−2 1.97E-02 5.27E-03 1.34E-03 3.37E-04 8.44E-05
10−3 4.11E-02 1.10E-02 2.80E-03 7.02E-04 1.76E-04
10−4 4.90E-02 1.30E-02 3.31E-03 8.32E-04 2.08E-04
10−5 5.08E-02 1.35E-02 3.43E-03 8.61E-04 2.15E-04
10−6 5.10E-02 1.36E-02 3.45E-03 8.66E-04 2.17E-04
10−7 5.10E-02 1.36E-02 3.45E-03 8.67E-04 2.17E-04
10−8 5.10E-02 1.36E-02 3.45E-03 8.67E-04 2.17E-04
EN,∆t 5.10E-02 1.36E-02 3.45E-03 8.67E-04 2.17E-04
ρN,∆t 1.91 1.98 1.99 2.00

Table 3.4: Number of iterations required by the algorithm to converge for Example 3.3.2.

ε N = 32 N = 64 N = 128 N = 256 N = 512

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

10−1 3 4 4 4 5
10−2 1 1 2 2 2
10−3 1 1 1 1 1
10−4 1 1 1 1 1
10−5 1 1 1 1 1
10−6 1 1 1 1 1
10−7 1 1 1 1 1
10−8 1 1 1 1 1

For problem (3.3.2), we determine the maximum pointwise errors by EN,∆t
ε =

||u − UN,∆t||
Q
N,M , where u and UN,∆t denotes the exact and numerical solutions,

respectively. The errors EN,∆t
ε , EN,∆t, and rates of convergence are computed in

a similar way as earlier. In Table 3.3 calculated errors EN,∆t
ε , EN,∆t, and rates

of convergence ρN,∆t are shown. Table 3.3 reveals that the method is parameter-

uniform. Table 3.4 displays the number of iterations that are needed for the algorithm
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Figure 3.1: Numerical solutions of Example 3.3.1 and 3.3.2 for ε = 10−6 with
N = 32,M = 64 are depicted in the left and right figures, respectively.

to converge. From it, we observe that the convergence to the desired accuracy is

achieved in only one iteration for smaller values of the perturbation parameter.

To visualize the boundary layer appearance, we have given the surface plots of the

numerical solutions of problems (3.3.1) and (3.3.2) for ε = 10−6 with N = 32, M =

64, in Fig. 3.1.

3.4 Conclusions

In this chapter, we have considered the numerical solution of singularly perturbed

semilinear parabolic reaction-diffusion problems. For the numerical approximation

of the problem, we designed a domain decomposition method of Schwarz waveform

relaxation type. The construction of the method is based on decomposing problem

domain into three overlapping subdomains and employing the backward Euler scheme

in the time direction and the central difference scheme in the spatial direction. The

method is shown to be capable of producing uniformly convergent results of first

order in time and almost second order in space. Numerical experiments are carried

out to demonstrate the effectiveness and robustness of the method.


