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A robust domain decomposition method for solving

singularly perturbed parabolic reaction-diffusion

problems with time delay

We consider the following model problem

Lu(x, t) + b(x, t)u(x, t− τ) = f(x, t), (x, t) ∈ D (2.0.1)

with 
u(x, t) = φ`(t), (x, t) ∈ Γ` = {0} × (0, T ],

u(x, t) = φr(t), (x, t) ∈ Γr = {1} × (0, T ],

u(x, t) = φb(x, t), (x, t) ∈ Γb = [0, 1]× [−τ, 0],

(2.0.2)

where

Lu(x, t) := ut(x, t)− εuxx(x, t) + a(x, t)u(x, t)

and

D := Ω× (0, T ] = (0, 1)× (0, T ].

We suppose 0 < ε ≤ 1, τ > 0 and b ≤ 0, a+ b ≥ α > 0 on D. Here, the assumption

a + b ≥ α > 0 is important, but not necessary, as the same can be achieved by

using the transformation u = exp(ct)ũ with some properly chosen constant c > 0.

For simplicity of the presentation we consider T = nτ for some positive integer n.

The results of this chapter are true even if this relation does not hold. We introduce

the notation Γ = Γ` ∪ Γr ∪ Γb and Γ̃ = Γ` ∪ Γr ∪ Γ0, where Γ0 = [0, 1]×{0}. We also

suppose that the problem data is sufficiently smooth and appropriate compatibility

conditions at (0, 0), (1, 0), (0,−τ) and (1,−τ) holds; cf. [23, 24]. The solution of

problem (2.0.1)-(2.0.2) has boundary layers near Γ` and Γr.

Robust numerical methods for solving singularly perturbed delay ordinary differ-

ential equations have been developed extensively in literature (see [56–63] and the
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references therein). However, robust numerical methods for solving singularly per-

turbed delay partial differential equations are not so much developed. In particular,

for problem (2.0.1)-(2.0.2), some work can be found in [23, 24] based on the fitted

mesh approach and in [26] based on the fitted operator approach. We note that the

existing methods [23, 24] for problem (2.0.1)-(2.0.2) are analyzed using the method

of steps and the maximum principle for the discrete operator corresponding to the

continuous operator L. Further, the method in [26] is analyzed using the method

of steps and the matrix method (where matrix is formed from the discretization

corresponding to L).

To the best of our knowledge no work is available in literature on domain decom-

position for problem (2.0.1)-(2.0.2). Thus, the aim of this chapter is three fold:

• We design an efficient domain decomposition method of SWR type for solving

problem (2.0.1)-(2.0.2). To achieve this we perform the decomposition and for-

mulate the iterative process directly at the PDE level itself, unlike the classical

approaches where the domain decomposition is applied after the semidiscretiza-

tion process either in time or in space for parabolic problems.

• We provide an error analysis framework for the proposed domain decomposi-

tion method. The main idea in our error analysis is based on a new discrete

maximum principle which we establish in Lemma 2.3.2 and the use of some

auxiliary problems which are motivated from our earlier work in [48].

• We prove that the proposed method yields robust numerical approximations

of almost second order in space and first order in time, and more importantly

only one iteration is sufficient for small values of the perturbation parameter.

Note that our error analysis framework based on the new discrete maximum principle

can also be used to analyze the numerical methods presented in [23,24,26] for problem

(2.0.1)-(2.0.2), while if we apply the idea of analysis presented in [23, 24, 26] (which

is based on method of steps as mentioned above) to analyze the proposed domain

decomposition method, the error constant will not be independent of the iteration

parameter and the delay parameter. At the end, some numerical results are given in

support of the theory.

2.1 A priori bounds

We first introduce the continuous operator L defined by Lu(x, t) := Lu(x, t) +

b(x, t)u(x, t − τ), (x, t) ∈ D, and establish the maximum principle for it. Then,
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using the maximum principle for the operator L, we derive some a priori bounds for

the solution derivatives of problem (2.0.1)-(2.0.2). Similar bounds are derived in [23]

using the method of steps and the maximum principle for the operator L.

Lemma 2.1.1. Suppose z(x, t) ≥ 0 for (x, t) ∈ Γb and z(0, t) ≥ 0, z(1, t) ≥ 0 for

t ∈ (0, T ]. Then Lz ≥ 0 in D implies that z ≥ 0 in D.

Proof. The proof follows using arguments in [64].

Lemma 2.1.2. Suppose u(x, t) ≥ 0 for (x, t) ∈ Γb and u(0, t) ≥ 0, u(1, t) ≥ 0 for

t ∈ (0, T ]. If Lu ≥ 0 in D then u(x, t) ≥ 0 in D.

Proof. Supposing z = u in [0, 1]× [−τ, τ ], we note that

z(x, t) ≥ 0 for (x, t) ∈ Γb and z(0, t) ≥ 0, z(1, t) ≥ 0 for t ∈ (0, τ ].

Also

Lz(x, t) ≥ −b(x, t)z(x, t− τ) ≥ 0 for (x, t) ∈ (0, 1)× (0, τ ],

as b ≤ 0 and z ≥ 0 in [0, 1] × [−τ, 0]. Hence, Lemma 2.1.1 gives u = z ≥ 0 in

[0, 1]× [0, τ ]. Now one can establish that u ≥ 0 in [0, 1]× [jτ, (j + 1)τ ], j ≥ 1, using

the fact that u ≥ 0 in [0, 1]× [(j−1)τ, jτ ], and repeating the previous arguments.

Lemma 2.1.3. The solution u of problem (2.0.1)-(2.0.2) satisfies∥∥∥∥ ∂s+pu∂xs∂tp

∥∥∥∥
D

≤ Cε−s/2 for 0 ≤ s+ 2p ≤ 4.

Proof. See [23, Theorem 3].

In the next lemma, using the maximum principle for L given in Lemma 2.1.3, we

derive sharper bounds on the solution derivatives.

Lemma 2.1.4. The solution u of problem (2.0.1)-(2.0.2) satisfies

|∂sxu(x, t)| 6 C(1 + ε−s/2(e−x
√
α/ε + e−(1−x)

√
α/ε)) (2.1.1)

for (x, t) ∈ D and s = 0, . . . , 4.

Proof. Setting Ps(x) = 1+ε−s/2(e−x
√
α/ε+e−(1−x)

√
α/ε), we prove the result by using

mathematical induction on s. The bound (2.1.1) for s = 0 follows from Lemma 2.1.3.

Assuming that (2.1.1) holds for s = 0, . . . , κ − 1, 1 ≤ κ ≤ 4, we shall prove (2.1.1)
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for s = κ. Letting z = ∂κxu, we have
Lz(x, t) := ∂tz(x, t)− ε∂2

xz(x, t) + az(x, t) + bz(x, t− τ)

= ∂κxf(x, t)−
∑κ−1

l=0

(
κ

l

)
a(κ−l)∂lxu(x, t)−

∑κ−1
l=0

(
κ

l

)
b(κ−l)∂lxu(x, t− τ)

:= Ψκ in D = (0, 1)× (0, T ],

and {
|z(x, t)| ≤ Cε−κ/2 in Γb,

|z(0, t)| ≤ Cε−κ/2, |z(1, t)| ≤ Cε−κ/2 in (0, T ].

Here, boundary and initial conditions bounds are deduced from Lemma 2.1.3. From

the inductive hypothesis, it is clear that |Ψκ(x, t)| ≤ CPκ−1(x). Then, the maximum

principle for L with the barrier function CPκ(x) gives the required bound.

Lemma 2.1.5. The solution u of problem (2.0.1)-(2.0.2) is decomposed into two

parts as u = v + w, which satisfy

||∂sxv||D ≤ C(1 + ε(2−s)/2), (2.1.2)

|∂sxw(x, t)| ≤ Cε−s/2
(

exp(−x
√
α/ε) + exp(−(1− x)

√
α/ε)

)
, (2.1.3)

for (x, t) ∈ D, s = 0, . . . , 4.

Proof. The decomposition follows using the idea in [65].

2.2 Domain decomposition method

The a priori bounds in Section 2.1 show the presence of boundary layers near Γ` and

Γr in the solution of problem (2.0.1)-(2.0.2). Thus, to set up the method, we divide

the domain into three subdomains that are overlapping, and the two layer regions are

localized in two outer subdomains (see figure 2.1 on page 17). More precisely, using

the Shishkin transition parameter σ (cf. [66]), the domain D is decomposed into

Dp = Ωp × (0, T ], p = `,m, r, where Ω` = (0, 2σ), Ωm = (σ, 1− σ), Ωr = (1− 2σ, 1)

with

σ = min

{
1

4
, 2

√
ε

α
lnN

}
. (2.2.1)

Here, N is the discretization parameter in the spatial direction. We define Γb,p =

Ωp × ω0, where ω0 = [−τ, 0]. On each Dp = Ωp × (0, T ] = (c, d)× (0, T ], we consider

a rectangular mesh that is uniform in both spatial and time directions. On Ωp, we
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define Ω
N

p = {xi}Ni=0, where x0 = c, xN = d, xi+1 = xi + hp, hp = (d − c)/N. Taking

M = nmτ , the intervals [−τ, 0] and [0, T ], respectively, are divided into mτ and M

subintervals of equal length ∆t. Suppose the meshes on [−τ, 0] and [0, T ] are denoted

by ωmτ0 and ωM , respectively. Introducing ΩN
p = Ω

N

p ∩ Ωp, and ωM = ωM ∩ (0, T ],

the mesh DN,M
p on Dp and ΓN,mτb,p on Γb,p are defined by the tensor product

DN,M
p = ΩN

p ×ωM and ΓN,mτb,p = Ω
N

p ×ωmτ0 .

For each subdomain DN,M
p , p = `,m, r,

the discretization is

[LN,Mp Up]i,j + bi,jUp;i,j−mτ = fi,j, (2.2.2)

where

[LN,Mp Up]i,j = [δtUp]i,j−ε[δ2
xUp]i,j+ai,jUp;i,j,

(2.2.3)

[δtY ]i,j := (Yi,j − Yi,j−1)/∆t,

[δ2
xY ]i,j = (Yi,j−1 − 2Yi,j + Yi,j+1)/h2

p.

Figure 2.1: Decomposition of the com-
putational domain.

After defining the discretization on each subdomain, the complete iterative process

is given as follows.

Step 1. We start with the following initial approximation

U [0](xi, tj) =



0, 0 < xi < 1, 0 < tj ≤ T,

u(xi, tj), 0 ≤ xi ≤ 1, −τ ≤ tj ≤ 0,

u(0, tj), (xi, tj) ∈ {0} × ωM ,

u(1, tj), (xi, tj) ∈ {1} × ωM .

(2.2.4)

Step 2. For each k ≥ 1, we solve the following problems for U
[k]
p , p = `,m, r,

[LN,M` U
[k]
` ]i,j + bi,jU

[k]
`;i,j−mτ = fi,j for (xi, tj) ∈ DN,M

` ,

U
[k]
` (xi, tj) = φb(xi, tj) for (xi, tj) ∈ ΓN,mτb,` ,

U
[k]
` (0, tj) = φ`(tj), U

[k]
` (2σ, tj) = IjU [k−1](2σ, tj) for tj ∈ ωM ,

[LN,Mr U
[k]
r ]i,j + bi,jU

[k]
r;i,j−mτ = fi,j for (xi, tj) ∈ DN,M

r ,

U
[k]
r (xi, tj) = φb(xi, tj) for (xi, tj) ∈ ΓN,mτb,r ,

U
[k]
r (1− 2σ, tj) = IjU [k−1](1− 2σ, tj), U

[k]
r (1, tj) = φr(tj) for tj ∈ ωM ,
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[LN,Mm U

[k]
m ]i,j + bi,jU

[k]
m;i,j−mτ = fi,j for (xi, tj) ∈ DN,M

m ,

U
[k]
m (xi, tj) = φb(xi, tj) for (xi, tj) ∈ ΓN,mτb,m ,

U
[k]
m (σ, tj) = IjU [k]

` (σ, tj), U
[k]
m (1− σ, tj) = IjU [k]

r (1− σ, tj) for tj ∈ ωM ,

where IjV denotes the piecewise linear interpolant of mesh function V at time level

tj.

Step 3. After computing the solutions on each subdomain, we obtain an approxima-

tion to the solution of problem (2.0.1)-(2.0.2) as follows

U [k](xi, tj) =


U

[k]
` (xi, tj), (xi, tj) ∈ D

N,M

` \Dm,

U
[k]
m (xi, tj), (xi, tj) ∈ D

N,M

m ,

U
[k]
r (xi, tj), (xi, tj) ∈ D

N,M

r \Dm.

(2.2.5)

Step 4. We stop, if

||U [k+1] − U [k]||
D
N,M ≤ tol

is satisfied; otherwise we go to Step 2 and repeat the process. Here, tol is a user-

prescribed value for ensuring the accuracy of the solution.

2.3 Error analysis

In this section, we provide error analysis of the method proposed in Section 2.2. We

introduce [LN,Mp Up]i,j = [LN,Mp Up]i,j + bi,jUp;i,j−mτ for (xi, tj) ∈ DN,M
p . The operators

LN,Mp and LN,Mp satisfy the following discrete maximum principles.

Lemma 2.3.1. Let Y be the mesh function such that Y (xi, tj) ≥ 0 for (xi, tj) ∈
ΓN,mτb,p and Y (x0, tj) ≥ 0, Y (xN , tj) ≥ 0 for tj ∈ ωM . Then [LN,Mp Y ]i,j ≥ 0 for

(xi, tj) ∈ DN,M
p implies that Y (xi, tj) ≥ 0 for (xi, tj) ∈ D

N,M

p .

Proof. The proof follows using arguments in [66].

Lemma 2.3.2. Let Z be the mesh function such that Z(xi, tj) ≥ 0 for (xi, tj) ∈
ΓN,mτb,p and Z(x0, tj) ≥ 0, Z(xN , tj) ≥ 0 for tj ∈ ωM . Then [LN,Mp Z]i,j ≥ 0 for

(xi, tj) ∈ DN,M
p implies that Z(xi, tj) ≥ 0 for (xi, tj) ∈ D

N,M

p .

Proof. Let p = `,m, r. For s = 0, 1 . . . , n, let D
N,mτ
p,s = Ω

N

p × ωmτs , where ωmτs is

obtained by dividing [(s − 1)τ, sτ ] into mτ equidistant intervals. We also introduce

the notation D
N,mτ
p;s,q = Ω

N

p ×ωmτs,q , where ωmτs,q is obtained by dividing [(s−1)τ, qτ ] into

(q−s+1)mτ equidistant intervals. Suppose Y (xi, tj) = Z(xi, tj) for (xi, tj) ∈ D
N,mτ
p;0,1 .
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Thus, we have

Y (xi, tj) ≥ 0 for (xi, tj) ∈ ΓN,mτb,p and Y (x0, tj) ≥ 0, Y (xN , tj) ≥ 0 for tj ∈ ωmτ1 .

Also

[LN,Mp Y ]i,j ≥ −bi,jY (xi, tj−mτ ) ≥ 0 for (xi, tj) ∈ DN,mτ
p,1 .

Therefore, by using Lemma 2.3.1, we get Z(xi, tj) = Y (xi, tj) ≥ 0 for (xi, tj) ∈
D
N,mτ
p,1 . The proof of Z(xi, tj) ≥ 0 for (xi, tj) ∈ D

N,mτ
p,s , s ≥ 2, follows using Z(xi, tj) ≥

0 for (xi, tj) ∈ D
N,mτ
p,s−1, and repeating the previous arguments.

We shall prove the uniform convergence of our method with the help of the following

auxiliary problems
[LN,M` Ũ`]i,j + bi,jŨ`;i,j−mτ = fi,j for (xi, tj) ∈ DN,M

` ,

Ũ`(xi, tj) = u(xi, tj) for (xi, tj) ∈ ΓN,mτb,` ,

Ũ`(0, tj) = u(0, tj), Ũ`(2σ, tj) = u(2σ, tj) for tj ∈ ωM ,
[LN,Mm Ũm]i,j + bi,jŨr;i,j−mτ = fi,j for (xi, tj) ∈ DN,M

m ,

Ũm(xi, tj) = u(xi, tj) for (xi, tj) ∈ ΓN,mτb,m ,

Ũm(σ, tj) = u(σ, tj), Ũm(1− σ, tj) = u(1− σ, tj) for tj ∈ ωM ,
[LN,Mr Ũr]i,j + bi,jŨm;i,j−mτ = fi,j for (xi, tj) ∈ DN,M

r ,

Ũr(xi, tj) = u(xi, tj) for (xi, tj) ∈ ΓN,mτb,r ,

Ũr(1− 2σ, tj) = u(1− 2σ, tj), Ũr(1, tj) = u(1, tj) for tj ∈ ωM .

In what follows, we use the following notation.

ϑσ = max

{
max
tj∈ωM

|(Ũm − Ũ`)(σ, tj)|, max
tj∈ωM

|(Ũm − Ũr)(1− σ, tj)|
}
,

ϑ2σ = max

{
max
tj∈ωM

|(Ũ` − Ũm)(2σ, tj)|, max
tj∈ωM

|(Ũr − Ũm)(1− 2σ, tj)|
}
,

ϑ[k] = max{max
tj∈ωM

|(Ũ` − IjU [k−1])(2σ, tj)|, max
tj∈ωM

|(Ũr − IjU [k−1])(1− 2σ, tj)|},

ξ[k] = max{||Ũ` − U [k]||
D
N,M
` \Dm

, ||Ũm − U [k]||
D
N,M
m

, ||Ũr − U [k]||
D
N,M
r \Dm

}.

Lemma 2.3.3. Let u be the solution of problem (2.0.1)-(2.0.2) and Ũp, p = `,m, r,

be the solutions of the auxiliary problems defined in this section. Then

||u− Ũp||DN,Mp
≤ C(∆t+N−2 ln2N), p = `,m, r. (2.3.1)
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Proof. For (xi, tj) ∈ DN,M
` , we have

[LN,M` (u− Ũ`)]i,j = [(LN,M` − L)u]i,j

=

(
δt −

∂

∂t

)
u(xi, tj)− ε

(
δ2
x −

∂2

∂x2

)
u(xi, tj).

By Taylor expansions, Lemma 2.1.3 and h` ≤ C
√
εN−1 lnN, we have

∣∣∣[LN,M` (u− Ũ`)]i,j
∣∣∣ ≤ 1

2
(tj − tj−1)

∥∥∥∥∂2u(xi, .)

∂t2

∥∥∥∥
[tj−1,tj ]

+
ε

12
h2
`

∥∥∥∥∂4u(., tj)

∂x4

∥∥∥∥
[xi−1,xi+1]

≤ C(∆t+N−2 ln2N).

So, Lemma 2.3.2 with a constant barrier function gives

||u− Ũ`||DN,M`
≤ C(∆t+N−2 ln2N).

Similarly, we have

||u− Ũr||DN,Mr
≤ C(∆t+N−2 ln2N).

To bound ||u−Ũm||DN,Mm
, we consider two different cases: σ = 1/4 and σ = 2

√
ε
α

lnN.

For the first case hm = 1/(2N) and ε−1 ≤ C ln2N. So, by Taylor expansions and

Lemma 2.1.3 (as previously) we get∣∣∣[LN,Mm (u− Ũm)]i,j

∣∣∣ ≤ C(∆t+N−2 ln2N) for (xi, tj) ∈ DN,M
m .

For the case σ = 2
√

ε
α

lnN, we consider Taylor expansion and Lemma 2.1.3 to get∣∣∣∣(δt − ∂

∂t

)
u(xi, tj)

∣∣∣∣ ≤ C∆t for (xi, tj) ∈ DN,M
m .

We use the solution decomposition u = v + w and Taylor expansions to get

ε

∣∣∣∣(δ2
x −

∂2

∂x2

)
u(xi, tj)

∣∣∣∣ ≤ ε

∣∣∣∣(δ2
x −

∂2

∂x2

)
v(xi, tj)

∣∣∣∣+ ε

∣∣∣∣(δ2
x −

∂2

∂x2

)
w(xi, tj)

∣∣∣∣
≤ Cεh2

m

∥∥∥∥∂4v(., tj)

∂x4

∥∥∥∥
[xi−1,xi+1]

+ Cε

∥∥∥∥∂2w(., tj)

∂x2

∥∥∥∥
[xi−1,xi+1]

Now using Lemma 2.1.5 and hm ≤ CN−1 we get

ε

∣∣∣∣(δ2
x −

∂2

∂x2

)
u(xi, tj)

∣∣∣∣ ≤ CN−2 + C
∥∥∥exp(−x

√
α/ε) + exp(−(1− x)

√
α/ε
∥∥∥

[xi−1,xi+1]

≤ CN−2,
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since, for (xi, tj) ∈ DN,M
m ,∥∥∥exp(−x

√
α/ε) + exp(−(1− x)

√
α/ε
∥∥∥

[xi−1,xi+1]
≤ (e−σ

√
α/ε + e−(1−(1−σ))

√
α/ε)

= 2e−σ
√
α/ε

= 2N−2.

Thus, for (xi, tj) ∈ DN,M
m , we have∣∣∣[LN,Mm (u− Ũm)]i,j

∣∣∣ ≤ C(∆t+N−2 ln2N).

So, using Lemma 2.3.2 with a constant barrier function we get ||u − Ũm||DN,Mm
≤

C(∆t+N−2 ln2N).

In the following theorem we prove that, when σ = 2
√

ε
α

lnN, one iteration is sufficient

to provide robust convergent approximation of almost second order in space and first

order in time.

Theorem 2.3.4. Let u be solution of problem (2.0.1)-(2.0.2) and U [1] be the first

iterate of the proposed method. If σ = 2
√

ε
α

lnN, then

||u− U [1]||
D
N,M ≤ C(∆t+N−2 ln2N).

Proof. We define the mesh function

Ψ±(xi, tj) = ψ`(xi, tj)± (Ũ` − U [1]
` )(xi, tj),

where ψ` satisfies
δt[ψ`]i,j − εδ2

x[ψ`]i,j + α
2
[ψ`]i,j + α

2
[ψ`]i,j−mτ = 0 for (xi, tj) ∈ DN,M

` ,

ψ`(xi, tj) = ϑ[1] (ζ1+ζ2)i−(ζ1−ζ2)i

(ζ1+ζ2)N−(ζ1−ζ2)N
for (xi, tj) ∈ ΓN,mτb,` ,

ψ`(0, tj) = 0, ψ`(2σ, tj) = ϑ[1] for tj ∈ ωM ,

(2.3.2)

with
ζ1 = 1 +

(
σ

N

√
α

ε

)2

, ζ2 = 2

(
σ

N

√
α

ε

)√
1 +

(
σ

N

√
α

ε

)2

.

The solution ψ` is independent of t and is given as follows

ψ`(xi, tj) = ϑ[1] (ζ1 + ζ2)i − (ζ1 − ζ2)i

(ζ1 + ζ2)N − (ζ1 − ζ2)N
.



22
A robust domain decomposition method for solving singularly perturbed parabolic

reaction-diffusion problems with time delay

Noting that Ũ` − U [1]
` satisfies

[LN,M` (Ũ` − U [1]
` )]i,j = 0 for (xi, tj) ∈ DN,M

` ,

(Ũ` − U [1]
` )(xi, tj) = 0 for (xi, tj) ∈ ΓN,mτb,` ,

(Ũ` − U [1]
` )(0, tj) = 0, |(Ũ` − U [1]

` )(2σ, tj)| ≤ ϑ[1] for tj ∈ ωM ,

we have

Ψ±(xi, tj) ≥ 0 for (xi, tj) ∈ ΓN,mτb,` , Ψ±(0, tj) = 0,Ψ±(2σ, tj) ≥ 0 for tj ∈ ωM ,

and for (xi, tj) ∈ DN,M
` , [LN,M` Ψ±]i,j ≥ 0. Then, by using Lemma 2.3.2, we get

|(Ũ` − U [1]
` )(xi, tj)| ≤ ψ`(xi, tj) for (xi, tj) ∈ D

N,M

` .

Now, for (xi, tj) ∈ D
N,M

` \Dm, we obtain

ψ`(xi, tj) ≤ ϑ[1] (ζ1 + ζ2)N/2 − (ζ1 − ζ2)N/2

(ζ1 + ζ2)N − (ζ1 − ζ2)N

=
ϑ[1]

(ζ1 + ζ2)N/2 + (ζ1 − ζ2)N/2
≤ ϑ[1]

(ζ1 + ζ2)N/2
.

Further, we have ζ2 ≥ 2
(
σ
N

√
α
ε

)
and

(
1 +

σ

N

√
α

ε

)−N
=

(
1 + 2

lnN

N

)−N
≤ 4N−2, N ≥ 1 for σ = 2

√
ε lnN/

√
α,

where the last inequality can be proved following the arguments in [4, Lemma 5.1].

Hence, we get ψ`(xi, tj) ≤ 4ϑ[1]N−2 for (xi, tj) ∈ D
N,M

` \Dm. Thus

||Ũ` − U [1]
` ||DN,M` \Dm

≤ 4ϑ[1]N−2. (2.3.3)

Similarly

||Ũr − U [1]
r ||DN,Mr \Dm

≤ 4ϑ[1]N−2. (2.3.4)

Next

[LN,Mm (Ũm − U [1]
m )]i,j = 0 for (xi, tj) ∈ DN,M

m ,

(Ũm − U [1]
m )(xi, tj) = 0 for (xi, tj) ∈ ΓN,mτb,m ,

|(Ũm − U [1]
m )(σ, tj)| = |(Ũm − IjU [1]

` )(σ, tj)| ≤ |(Ũm − Ũ`)(σ, tj)|+ |(Ũ` − U [1]
` )(σ, tj)|

≤ ϑσ + 4ϑ[1]N−2 for tj ∈ ωM ,
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and

|(Ũm − U [1]
m )(1− σ, tj)| = |(Ũm − IjU [1]

r )(1− σ, tj)|

≤ |(Ũm − Ũr)(1− σ, tj)|+ |(Ũr − U [1]
r )(1− σ, tj)|

≤ ϑσ + 4ϑ[1]N−2 for tj ∈ ωM ,

as (σ, tj) ∈ D
N,M

` and (1− σ, tj) ∈ D
N,M

r .

Thus, by Lemma 2.3.2, we have

||Ũm − U [1]
m ||DN,Mm

≤ ϑσ + 4ϑ[1]N−2. (2.3.5)

Hence

ξ[1] ≤ ϑσ + 4ϑ[1]N−2. (2.3.6)

Now using Lemma 2.3.3, ϑσ ≤ C(∆t+N−2 ln2N), as (σ, tj) ∈ D
N,M

` and (1−σ, tj) ∈
D
N,M

r . Since ϑ[1] ≤ C, the desired result can be obtained by combining (2.3.6) and

Lemma 2.3.3.

In the following theorem, we establish uniform convergence of the method for

σ = 1/4.

Theorem 2.3.5. Let u be the solution of (2.0.1)-(2.0.2) and U [k] be the kth approx-

imation of the proposed method. If σ = 1/4, then

||u− U [k]||
D
N,M ≤ C2−k + C(∆t+N−2 ln2N). (2.3.7)

Proof. Introducing the mesh function

Ψ±(xi, tj) =
xi
2σ
ϑ[1] ± (Ũ` − U [1]

` )(xi, tj),

where Ũ` − U [1]
` satisfies

[LN,M` (Ũ` − U [1]
` )]i,j = 0 for (xi, tj) ∈ DN,M

` ,

(Ũ` − U [1]
` )(xi, tj) = 0 for (xi, tj) ∈ ΓN,mτb,` ,

(Ũ` − U [1]
` )(0, tj) = 0, |(Ũ` − U [1]

` )(2σ, tj)| ≤ ϑ[1] for tj ∈ ωM ,

we have {
Ψ±(xi, tj) ≥ 0 for (xi, tj) ∈ ΓN,mτb,` ,

Ψ±(0, tj) = 0,Ψ±(2σ, tj) ≥ 0 for tj ∈ ωM ,
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and for (xi, tj) ∈ DN,M
` ,

[LN,M` Ψ±]i,j = (ai,j + bi,j)
xi
2σ
ϑ[1] ± 0 ≥ 0.

Then, by using Lemma 2.3.2, we get

|(Ũ` − U [1]
` )(xi, tj)| ≤

xi
2σ
ϑ[1] for (xi, tj) ∈ D

N,M

` .

Hence

||Ũ` − U [1]
` ||DN,M` \Dm

≤ ϑ[1]

2
, as xi ≤ σ. (2.3.8)

Similarly we can also show that

||Ũr − U [1]
r ||DN,Mr \Dm

≤ ϑ[1]

2
. (2.3.9)

Next, we find an estimate for ||Ũm − U [1]
m ||DN,Mm

. We have

[LN,Mm (Ũm − U [1]
m )]i,j = 0 for (xi, tj) ∈ DN,M

m ,

(Ũm − U [1]
m )(xi, tj) = 0 for (xi, tj) ∈ ΓN,mτb,m .

Also |(Ũm − U [1]
m )(σ, tj)| = |(Ũm − IjU [1]

` )(σ, tj)|

≤ ϑσ +
ϑ[1]

2
, for tj ∈ ωM ,

|(Ũm − U [1]
m )(1− σ, tj)| = |(Ũm − IjU [1]

r )(1− σ, tj)|

≤ ϑσ +
ϑ[1]

2
, for tj ∈ ωM ,

as (σ, tj) ∈ D
N,M

` and (1− σ, tj) ∈ D
N,M

r . So, using Lemma 2.3.2, we get

||Ũm − U [1]
m ||DN,Mm

≤ ϑσ +
ϑ[1]

2
. (2.3.10)

For estimating ξ[2] we will require a bound on ϑ[2]. For σ = 1/4, (2σ, tj), (1−2σ, tj) ∈
D
N,M

m . Thus

|(Ũ` − IjU [1])(2σ, tj)| ≤ ϑ2σ + ϑσ +
ϑ[1]

2

and |(Ũr − IjU [1])(1− 2σ, tj)| ≤ ϑ2σ + ϑσ +
ϑ[1]

2
.

Therefore ϑ[2] ≤ ϑ2σ + ϑσ + ϑ[1]

2
for tj ∈ ωM . Hence

max{ξ[1], ϑ[2]} ≤ λ+
ϑ[1]

2
, λ = ϑ2σ + ϑσ.
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We repeat previous arguments to get

max{ξ[k], ϑ[k+1]} ≤ λ+
ϑ[k]

2
.

Simplifying this we get

ξ[k] ≤ 2λ+ 2−kϑ[1].

Hence

ϑ[k] ≤ 2λ+ 2−(k−1)ϑ[1]. (2.3.11)

From Lemma 2.3.3, λ ≤ C(∆t + N−2 ln2N), as (2σ, tj), (1 − 2σ, tj) ∈ D
N,M

m , and

(σ, tj) ∈ D
N,M

` and (1 − σ, tj) ∈ D
N,M

r . Note that ϑ[1] ≤ C. Hence, by combining

(2.3.11) and Lemma 2.3.3, we have the result.

2.4 Numerical results

To verify the theoretical results established in the previous section we consider two

test problems similar to [23,24].

Example 2.4.1. Consider the following test problem
∂u(x,t)
∂t
− ε∂

2u(x,t)
∂x2 + (1.1 + x2)u(x, t)− u(x, t− 1) = t3 (x, t) ∈ D := Ω× (0, 2],

u(x, t) = 0 (x, t) ∈ [0, 1]× [−1, 0],

u(0, t) = 0, u(1, t) = 0 t ∈ (0, 2],

whose exact solution is not known.

For stopping the iterative process, we consider tol = N−2. After stopping the iterative

process, the resulting approximate solution is denoted by UN,∆t
ε . Since we do not

know the solution of the above test problem, we compute the maximum pointwise

error and uniform error in the following way

EN,∆t
ε = ||UN,∆t

ε − U2N,∆t/2q

ε ||
D
N,M and EN,∆t = max

ε
EN,∆t
ε , (2.4.1)

where U
2N,∆t/2q

ε , q = 1, 2, is the approximate solution of the test problem obtained

with time step size ∆t/2q and 2N + 1 mesh points in spatial direction in each sub-

domain but with subdomain parameter σ considered for computing UN,∆t
ε .

After that we compute uniform rate of convergence by

ρN,∆t = log2

(
EN,∆t

E2N,∆t/2q

)
.
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Table 2.1: Maximum errors EN,∆tε , EN,∆t and uniform rate of convergence ρN,∆t for
Example 2.4.1.

ε = 10−p N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 0.25 ∆t = 0.25/4 ∆t = 0.25/42 ∆t = 0.25/43 ∆t = 0.25/44

p = 0 1.65E-02 5.26E-03 1.73E-03 4.66E-04 1.19E-04
1 3.31E-01 8.62E-02 2.18E-02 5.46E-03 1.37E-03
2 6.78E-01 1.75E-01 4.40E-02 1.10E-02 2.76E-03
3 7.71E-01 1.98E-01 4.97E-02 1.24E-02 3.11E-03
4 7.92E-01 2.03E-01 5.09E-02 1.27E-02 3.19E-03
5 7.95E-01 2.03E-01 5.11E-02 1.28E-02 3.20E-03
6 7.95E-01 2.03E-01 5.12E-02 1.28E-02 3.20E-03
7 7.95E-01 2.03E-01 5.12E-02 1.28E-02 3.20E-03
8 7.95E-01 2.03E-01 5.12E-02 1.28E-02 3.20E-03

EN,∆t 7.95E-01 2.03E-01 5.12E-02 1.28E-02 3.20E-03
ρN,∆t 1.97 1.99 2.00 2.00

Table 2.2: Maximum errors EN,∆tε , EN,∆t and uniform rate of convergence ρN,∆t for
Example 2.4.1.

ε = 10−p N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 0.25 ∆t = 0.25/2 ∆t = 0.25/22 ∆t = 0.25/23 ∆t = 0.25/24

p = 0 6.55E-03 3.42E-03 1.79E-03 9.01E-04 4.55E-04
1 1.02E-01 5.28E-02 2.69E-02 1.36E-02 6.82E-03
2 1.77E-01 9.05E-02 4.57E-02 2.30E-02 1.15E-02
3 1.94E-01 9.88E-02 4.98E-02 2.50E-02 1.25E-02
4 1.98E-01 1.00E-01 5.06E-02 2.54E-02 1.27E-02
5 1.99E-01 1.01E-01 5.07E-02 2.54E-02 1.27E-02
6 1.99E-01 1.01E-01 5.07E-02 2.54E-02 1.27E-02
7 1.99E-01 1.01E-01 5.07E-02 2.54E-02 1.27E-02
8 1.99E-01 1.01E-01 5.07E-02 2.54E-02 1.27E-02

EN,∆t 1.99E-01 1.01E-01 5.07E-02 2.54E-02 1.27E-02
ρN,∆t 0.98 0.99 1.00 1.00

Table 2.3: Number of iterations required by the method for Example 2.4.1.

ε = 10−p N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 0.25 ∆t = 0.25/4 ∆t = 0.25/42 ∆t = 0.25/43 ∆t = 0.25/44

p = 0 10 11 13 14 16
1 5 6 6 6 7
2 2 2 2 2 3
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1
7 1 1 1 1 1
8 1 1 1 1 1
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For q = 2, Table 2.1 displays the errors EN,∆t
ε , EN,∆t and rate of convergence ρN,∆t

computed using the proposed method for this test problem. The last row of this table

corresponds to the rate of convergence ρN,∆t, which clearly verify our theoretical

results proved in Section 2.3. To see the convergence corresponding to the time

discretization error, we divided the time step size by two, as displayed in Table 2.2.

From it, we observe the first order uniform convergence. Table 2.3 displays the

iterations needed to get the approximate solution. One can observe that when ε

is small, only one iteration is required to obtained the desired result, as has been

proved in Theorem 2.3.4.

Example 2.4.2. Consider the following test problem
∂u(x,t)
∂t
− ε∂

2u(x,t)
∂x2 + 4u(x, t)− 2e−1u(x, t− 1) = 0 (x, t) ∈ D := Ω× (0, 2],

u(x, t) = e−(t+x/
√
ε) (x, t) ∈ [0, 1]× [−1, 0],

u(0, t) = e−t, u(1, t) = e−(t+1/
√
ε) t ∈ (0, 2],

whose exact solution is u(x, t) = e−(t+x/
√
ε).

Table 2.4: Maximum errors EN,∆tε , EN,∆t and uniform rate of convergence ρN,∆t for
Example 2.4.2.

ε = 10−p N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 0.25 ∆t = 0.25/4 ∆t = 0.25/42 ∆t = 0.25/43 ∆t = 0.25/44

p = 0 4.36E-03 1.31E-03 3.45E-04 8.73E-05 2.19E-05
1 6.32E-03 1.75E-03 4.53E-04 1.14E-04 2.86E-05
2 6.37E-03 1.77E-03 4.60E-04 1.16E-04 2.91E-05
3 6.53E-03 1.88E-03 5.07E-04 1.32E-04 3.32E-05
4 6.53E-03 1.88E-03 5.07E-04 1.32E-04 3.32E-05
5 6.53E-03 1.88E-03 5.07E-04 1.32E-04 3.44E-05
6 6.53E-03 1.88E-03 5.07E-04 1.32E-04 3.32E-05
7 6.53E-03 1.88E-03 5.07E-04 1.32E-04 3.32E-05
8 6.53E-03 1.88E-03 5.07E-04 1.32E-04 3.32E-05

EN,∆t 6.53E-03 1.88E-03 5.07E-04 1.32E-04 3.32E-05
ρN,∆t 1.80 1.89 1.94 1.94

We compute the maximum pointwise error and uniform error in the following

way

EN,∆t
ε = ||u− UN,∆t

ε ||
D
N,M and EN,∆t = max

ε
EN,∆t
ε . (2.4.2)

After that uniform convergence rate is computed as follows

ρN,∆t = log2

(
EN,∆t

E2N,∆t/4

)
.
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Table 2.5: Maximum errors EN,∆tε , EN,∆t and uniform rate of convergence ρN,∆t for
Example 2.4.2.

ε = 10−p N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 0.25 ∆t = 0.25/2 ∆t = 0.25/22 ∆t = 0.25/23 ∆t = 0.25/24

p = 0 4.36E-03 2.49E-03 1.32E-03 6.78E-04 3.45E-04
1 6.32E-03 3.36E-03 1.75E-03 8.95E-04 4.53E-04
2 6.37E-03 3.38E-03 1.76E-03 8.96E-04 4.53E-04
3 6.53E-03 3.45E-03 1.80E-03 9.11E-04 4.57E-04
4 6.53E-03 3.45E-03 1.80E-03 9.11E-04 4.58E-04
5 6.53E-03 3.45E-03 1.80E-03 9.11E-04 4.58E-04
6 6.53E-03 3.45E-03 1.80E-03 9.11E-04 4.58E-04
7 6.53E-03 3.45E-03 1.80E-03 9.11E-04 4.58E-04
8 6.53E-03 3.45E-03 1.80E-03 9.11E-04 4.58E-04

EN,∆t 6.53E-03 3.45E-03 1.80E-03 9.11e-04 4.58E-04
ρN,∆t 0.92 0.94 0.98 0.99

Table 2.6: Number of iterations required by the method for Example 2.4.2.

ε = 10−p N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 0.25 ∆t = 0.25/4 ∆t = 0.25/42 ∆t = 0.25/43 ∆t = 0.25/44

p = 0 6 8 10 11 13
1 3 3 4 4 5
2 1 1 1 2 2
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1
7 1 1 1 1 1
8 1 1 1 1 1

For q = 2, the maximum pointwise error EN,∆t
ε , uniform error EN,∆t and uniform

rate of convergence ρN,∆t computed using the proposed method are given in Table

2.4. Taking q = 1, results are given in Table 2.5, where we observe the first order

convergence corresponding to the time discretization. Table 2.6 gives the number of

iterations required by the iterative process for computing the approximate solution.

One can observe that the numerical results are well in accordance with our theoretical

findings.

The numerical solution plots for Examples 2.4.1 and 2.4.2 taking ε = 10−6, N =

32, M = 64 are given in Figure 2.2. In Figure 2.3, we show loglog plot of the

maximum pointwise errors vs N for both the examples. The slopes of these plots

also validate the theoretically obtained convergence result.
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Figure 2.2: Numerical solutions of Examples 2.4.1 and 2.4.2 for ε = 10−6 with
N = 32, M = 64 are depicted in the left and right figures, respectively.
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Figure 2.3: Loglog plot of the maximum pointwise errors for Examples 2.4.1 and
2.4.2 are depicted in the left and right subfigures, respectively.

Table 2.7: The used CPU time in seconds for both the examples with ε = 10−5.

N = 25 N = 26 N = 27 N = 28

∆t = 0.25 ∆t = 0.25/4 ∆t = 0.25/42 ∆t = 0.25/43

Example 2.4.1 0.006750 0.040082 0.304704 2.951105
Example 2.4.2 0.007936 0.057514 0.390472 3.176893

The proposed method is implemented in MATLAB R2011b (TheMathworks,Inc.),

on a 64 bit Windows7 machine, with Intel(R) Core(TM) i5-2430M processor running

at 2.4GHz and 4.00Gb RAM. The used CPU time in seconds for the proposed method
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for Examples 2.4.1 and 2.4.1 is given in Table 2.7.

2.5 Conclusions

In this chapter, we have developed a domain decomposition method of SWR type for

solving singularly perturbed parabolic reaction-diffusion problems with time delay.

To set up the method the original domain is decomposed into three overlapping

subdomains and on each subdomain the problem is discretized by the backward

Euler scheme in the time direction and the central difference scheme in the spatial

direction. After that an iterative process is given with Dirichlet type boundary

conditions passed from the previous iterate. The error analysis is given with the help

of some auxiliary problems. It is proved that the method is uniformly convergent,

which is enabled by the discrete maximum principle established in Lemma 2.3.2

which is the discrete equivalent of the continuous maximum principle given in Lemma

2.1.2. In addition, much faster convergence of the algorithm for small values of the

perturbation parameter is also established. Finally, some numerical results are given

in support of the theoretical error estimates.


