
Chapter 7

Study and analysis of a two-dimensional

non-conservative fractional-order aerosol

transport equation

7.1 Introduction

A suspension of fine solid particles or liquid droplets, in the air or another gas is

called aerosol. It Includes both particles and suspending air. The most common ex-

ample of the aerosol is fog, dust and geyser steam, etc. The aerosol term is first used

during the First World War to express the aero-solution. Aero is microscopic parti-

cles in the air. The hydrosol terms are developed by aerosol equivalently. Hydrosol

represents the collision of the system with water as a dispersed medium. When

an aerosol particle is directly introduced into the gas called primary aerosols and
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gas-to-particle conversion is called secondary aerosols. Classification of the aerosol

is defined on the basis of their physical form and how they are generated like dust,

fume, mist, smoke and fog. The aerosol transport phenomenon includes the physical

activities viz., convective transfer, diffusion, deposition, re-suspension, electrophore-

sis, gravitational settling, coagulation, condensation and evaporation.

Tiny liquid and solid particles contained in the earth’s atmosphere are

aerosols, which influence climate and air qualities. Aerosols include sea salt, dust,

volcanic ash, burning fossil fuels produced by people as well as soot, sulfates which

influence the public health. The data given by NASA [165] based on the Moderate

Resolution Imaging Spectroradiometer (MODIS) shows the distribution of human

pollution, natural aerosols or a mixture of both. On the basis of given data by

NASA, the natural sea salts are the largest source of aerosol.

The general aerosol transport equation is given as

∂q(ν, ~r, t)

∂t
=O.[D(ν, ~r, t)Oq(ν, ~r, t)]− O.[U(ν, ~r, t)q(ν, ~r, t)]− ∂

∂ν
[I(ν, ~r, t)q(ν, ~r, t)]

+ S(ν, ~r, t) +
(∂q(ν, ~r, t)

∂t

)
coag

, (7.1)

where q is the differential aerosol property (e.g., volume concentration), U is the

velocity of aerosol, D diffusion coefficient, I is the rate of growth due to condensation

and evaporation, S is independent source term.

Coagulation is defined for any q(ν, t), given by

(∂q(ν, ~r, t)
∂t

)
coag

=
1

2

∫ ν

0

K(u, v − u)q(u, t)q(ν − u, t)du− q(ν, t)
∫ ∞
0

K(u, v)q(u, t)du,

(7.2)

where K(u, ν) is the Coagulation kernel.
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Recently, many researchers are involved in the field of aerosol transporta-

tion due to its direct link to climate change. Man-made aerosols may influence

the climatic changes, but natural aerosols have more influence on climatic changes.

Aerosols are generally found in the emissions of sources like volcanoes, bushfires and

the ocean and also formed from the unnatural sources like burning fossil fuels and

sulphate emissions. Their states can be solids like smoke and sea salt, liquids like

water and gases like sulphur dioxide. Aerosols reflect back the energy of the sun to

space through their interactions with clouds which causes the cooling of the earth.

Scientists apply radiative forcing to measure this cooling. This cooling effect by

aerosols is negligible as compared to the warming effects due to greenhouse gases as

a result heat of the earth is increasing day by day. Again aerosols particles sometimes

have a short lifetime in the atmosphere before reaching to the earth surface and as

a result contribution of these particles to cooling effect. Therefore the increase in

aerosols particles in natural or artificial ways like formations of carbonic, sulphate,

nitrate and organic aerosol particles is a challenging job to the scientists working in

the field of atmospheric sciences. Many models on aerosol transport have been devel-

oped viz., Browner et al. [166] developed an aerosol model for atomic spectrometry,

Darquenne and Parva [167] developed a model in one-dimension for simulation of

aerosol transport and deposition in the human lung. The same authors [168] have

developed a simulation of aerosol in human lung in two and three dimensions. Comer

et al. [169] solved a model of aerosol transport in sequentially bifurcating airways.

In article Soldati [170] calculated the effect of turbulence and electro-hydrodynamic

flows on aerosol transport and Zhang et al. [171] developed a model for deposition

in a human oral airway and Micro-particle transport. Rajagopal et al. [172] utilized

numerical methods to analyze the aerosol transport problem in integral system by

coupling computational fluid dynamics and aerosol dynamic equation. Vignati et al.

[173] have developed a model of the aerosol microscopic module for large scale, in the
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year 2010, a model to validate the size-resolved particle dry depositions scheme for

application in aerosol transport model had been developed [174]. Many researchers

have studied fractional-order differential system [136, 175, 176, 177, 178, 179] due to

important applications of fractional-order model; there is plenty of scope to develop

better numerical methods to find approximate solutions especially for the aerosol

equation in fractional-order system.

Legendre collocation method, using operational matrix, is very much reli-

able as Legendre polynomials involved in it are satisfying orthogonality condition.

It has got considerable attention to the researchers during handling of various prob-

lems. A truncated orthogonal series is used in the method to solve differential

equations. The reason behind the approach for using the technique is that the dif-

ferential equation is converted into a system of algebraic equations which simplify

the problem. To the best of author’s knowledge, the present model has not yet

been considered by any researcher and therefore we have given our effort to solve

the model under prescribed initial and boundary conditions using shifted Legendre

collocation method.

In the present chapter, a drive has been taken to use the shifted Legendre

polynomial approximation and an operational matrix for fractional derivatives to

solve the two-dimensional time-fractional aerosol transport equation. Applying the

shifted Legendre polynomial and operational matrix transform, the two-dimensional

PDE is converted into a system of algebraic equations. The equations thus obtained

are solved using Newton method. The main focus is concerned with the effect of

particle size and also the impact of fractional-order parameter on the solution profile

for different particular cases.
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7.2 Solution of the problem

Consider two-dimensional fractional-order aerosol transport problem with initial and

boundary conditions as

∂αC(x, y, s, t)

∂tα
=

∂

∂x

(
D(x, y, s, t).

∂C(x, y, s, t)

∂x

)
+

∂

∂y

(
D(x, y, s, t).

∂C(x, y, s, t)

∂y

)
− ∂

∂x

(
V1(x, y, s, t).C(x, y, s, t)

)
− ∂

∂y

(
V2(x, y, s, t).C(x, y, s, t)

)
− λC(x, y, s, t),

(7.3)

where 0 < α ≤ 1,

with initial condition as

C(x, y, s, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (7.4)

and four boundary conditions as


C(0, y, s, t) = C0 = t,

∂C(1, y, s, t)

∂x
= 0,

∂C(x, 0, s, t)

∂y
= 0,

∂C(x, 1, s, t)

∂y
= 0,

(7.5)

where D(x, y, s, t) is the diffusion coefficient and V1(x, y, s, t), V2(x, y, s, t) are veloci-

ties of aerosol in the direction of x and y. By applying shifted Legendre approximate

for unknown variables and using operational matrices for derivatives taking param-

eters’ values of the equation as D(x, y, s, t) = 10s(x2 + y), V1(x, y, s, t) = sx and

V2(x, y, s, t) = sy2, we get an approximation form of the equation of the considered
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problem (7.3) with initial condition (7.4) as

(φ(t))T (D(α))T .U.(φm,l(x)⊗ φm,l(y))− 10s(y + x2)(φ(t))T .U.(D(2) ⊗ I).

(φm,l(x)⊗ φm,l(y)) + (φ(t))T .U.(I ⊗D(2)).(φm,l(x)⊗ φm,l(y))− 19sx(φ(t))T .U.

(D(1) ⊗ I).(φm,l(x)⊗ φm,l(y))− s(10− y2)(φ(t))T .U.(I ⊗D(1)).(φm,l(x)⊗ φm,l(y))

+ (s+ 2sy + λ)(φ(t))T .U.(φm,l(x)⊗ φm,l(y)) + (φ(0))T .U.(φm,l(x)⊗ φm,l(y)) = 0.

(7.6)

The boundary conditions (7.5) are approximated as



(φm,τ (t))
T .U.(φm,l(0)⊗ φm,l(y))− t = 0,

(φm,τ (t))
T .U.(D(1) ⊗ I).(φm,l(1)⊗ φm,l(y)) = 0

(φm,τ (t))
T .U.(I ⊗D(1)).(φm,l(x)⊗ φm,l(0)) = 0,

(φm,τ (t))
T .U.(I ⊗D(1)).(φm,l(x)⊗ φm,l(1)) = 0.

(7.7)

Equation (7.6) is collocated at the points (xi, yi, tj). Equations (7.7) are collocated at

the points (yi, tj) and (xi, tj), where xi and yi are the Legendre-Gauss-Lobatto (LGL)

points of P l
m−1(x) and P l

m−1(y) respectively. t′js are the roots of shifted Legendre

polynomial P τ
n+1(t). Shifted LGL grids play an important role in nodal spectral

methods during the numerical solution of PDEs. After collocation equations (7.6)-

(7.7) are converted into a system of linear algebraic equations. The unknown matrix

U can be found from obtained linear algebraic equations which have been solved

using Newton iteration method by mathematical computation. The approximate

solution C(x, y, s, t) can be found by substituting the value of the unknown matrix

U .
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7.3 Numerical results and discussion

First of all, the proposed method is validated while applying on the following

fractional-order two-dimensional problem to compare the obtained results with an-

alytical results.

∂0.4C(x, y, t)

∂t0.4
= d(x, y, t)

∂2C(x, y, t)

∂x2
+ e(x, y, t)

∂2C(x, y, t)

∂y2
+ q(x, y, t),

0 < x < 1, 0 < y < 1, 0 ≤ t ≤ 1,

where d(x, y, t) =
2 t1.6

π2 Γ0.6
, e(x, y, t) =

t1.6

12 π2Γ0.6
, q(x, y, t) =

25 t1.6

12Γ0.6
(t2 + 2) sin(πx)

sin(πy), with C(x, y, 0) = sin(πx) sin(πy), C(0, y, t) = C(1, y, t) = C(x, 0, t) =

C(x, 1, t) = 0 whose analytical solution given by Zuang and Liu [180] is

Cexact(x, y, t) = (t2 + 1) sin(πx) sin(πy).

The absolute error ERm(x, y, t) is defined as ERm(x, y, t) = |Cexac(x, y, t)−

C(x, y, t)|. Next we define the rate of convergence as µ1 =
ER5(x, y, t)

ER3(x, y, t)
and µ2 =

ER7(x, y, t)

ER5(x, y, t)
such that µ1, µ2 ∈ (0, 1) . When µ1 > µ2, that is µk varies from

step to step with µk → 0 as k → ∞ then method is said to be super-linearly

convergence. Therefore the error analysis exhibited through the Tables 7.1 and 7.2

clearly confirm that convergence rate of the proposed method is super-linearly as the

shifted Legendre polynomials in x and y increase. Since the absolute error increases

with the increase in the order of the approximation of the polynomial m, therefore

our proposed method is computationally effective and it takes less time to obtain

the accurate result. The error analysis depicted through Figure 7.1 clearly shows

the similarity in results obtained through numerical and analytical methods. After

being a justification of the accuracy and reliability of the method, the author has
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motivated to use the concerned method to obtain numerical solutions of the proposed

model (7.3) under the conditions given in equations (7.4) and (7.5).

The normalized mass concentration C(x, y, s, t)/C0 for different particle

sizes s = 0.1, 0.2 in the standard order system (α = 1) are calculated for a non-

conservative case (λ = 1 > 0) for a particular time t = 0.5, which is depicted

through Figure 7.2. During computation, the shifted Legendre polynomials are

approximated for m = 7. It is seen from the figure that the mass concentration

might increase or decrease with the changes in particle size. This is physically

justified as in the case of cloud processing, particles with comparatively smaller size

diffuse into the droplets and trace gases to get converted to particle matter within

the droplets. This increases the size of the particles and produces bimodal size

distribution due to evaporation of droplets. The numerical results of the normalize

mass concentration factor are shown through Figure 7.3 for α = 0.4(0.2)1 and the

non-conservative case for the size of the particle s = 0.1 at t = 0.5. It is observed

that the normalized mass concentration decreases as the system approaches from

fractional-order to integer-order.

The variations of normalized mass concentration with respect to x and y

are shown through Figure 7.4 and Figure 7.5 for α = 1 and α = 0.4 respectively at

t = 0.25(0.25)1.0. In both cases the mass concentrations increase with the increase

in time. It is also seen from the figures that the normalized mass concentration

difference at different time level is more for integer order system (α = 1) as compared

to fractional-order system (α = 0.4).
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Table 7.1 Maximum absolute error ERm(x, 0.5, 1) for m = 3, 5 and 7

x ER3(x, 0.5, 1) ER5(x, 0.5, 1) ER7(x, 0.5, 1)

0.1 0.176189 2.83193× 10−3 2.16603× 10−5

0.2 0.236381 8.04808× 10−3 1.08223× 10−5

0.3 0.235152 1.03313× 10−2 7.21456× 10−5

0.4 0.215814 1.02124× 10−2 1.08137× 10−4

0.5 0.206174 9.83092× 10−3 1.11683× 10−5

0.6 0.215814 1.02124× 10−2 1.01137× 10−4

0.7 0.235152 1.03313× 10−2 7.21456× 10−5

0.8 0.236381 8.04808× 10−3 1.08223× 10−5

0.9 0.176189 2.83193× 10−3 1.16603× 10−5

Table 7.2 Maximum absolute error ERm(0.5, y, 1) for m = 3, 5 and 7

y ER3(0.5, y, 1) ER5(0.5, y, 1) ER7(0.5, y, 1)

0.1 0.176189 2.71464× 10−3 4.41613× 10−6

0.2 0.236381 7.93079× 10−3 4.27804× 10−5

0.3 0.235152 1.02629× 10−2 1.06063× 10−5

0.4 0.215814 1.01929× 10−2 1.18282× 10−5

0.5 0.206174 9.83092× 10−3 1.11683× 10−5

0.6 0.215814 1.01929× 10−2 1.18282× 10−5

0.7 0.235152 1.02629× 10−2 1.06063× 10−5

0.8 0.236381 7.93079× 10−3 4.27804× 10−5

0.9 0.176189 2.71464× 10−3 4.41613× 10−6
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Figure 7.1: Plots of the error function |Cexact(x, y, 1)− C(x, y, 1)| vs. x
and y

Figure 7.2: Plots of normalized mass concentration at a particular time
t = 0.5 for different particle size s = 0.1 and s = 0.2 for α = 1.
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Figure 7.3: Plots of normalized mass concentration at a particular time
t = 0.5 for different fractional time derivative α = 0.4, 0.6, 0.8, and 1.

Figure 7.4: Plots of the normalized mass concentration vs. x and y for
various time at particle size s = 0.1 for α = 1.
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Figure 7.5: Plots of the normalized mass concentration vs. x and y for
various time at particle size s = 0.1 for α = 0.4.

7.4 Conclusion

The aim of this scientific contribution is to find the numerical solution of two-

dimensional time fractional-order aerosol transport equation in the presence of reac-

tion term in the finite domain using the shifted Legendre collocation method. The

efficiency and effectiveness of the method are validated by comparing the results ob-

tained by using the present method with an analytical result of the two-dimensional

time fractional-order problem through error analysis. The important part of the

present study is the exhibition of super-linearly convergence rate of the considered

model using the proposed method. The most important point of this presentation is

the graphical exhibitions of the effect of particle size on the solution profile and also

variations of mass concentration when the system approaches from fractional-order
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to standard order. The variation of normalized mass concentration through picto-

rial presentations at different time levels when the system is in fractional as well as

integer orders is also an important observation of the present contribution.

***********


