
Chapter 6

Study and analysis of nonlinear

(2+1)-dimensional space-time fractional

reaction-advection-diffusion equation

6.1 Introduction

The linear/nonlinear (2+1)-dimensional fractional-order problems do not have a

precise analytic solution. Especially it is hard to get for nonlinear equations in

fractional-order systems. Approximate analytical methods and numerical methods

are very useful for solving these types of equations. Achieving computationally effi-

cient solutions of these evolutions for different particular cases are very challenging

jobs. Due to physical relevance and important applications to explore nonlinear

space-time FRADE subject to different types of initial and boundary conditions

The contents of this chapter have been communicated in Communications in nonlinear
science and numerical simulation for the publication.
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viz., Dirichlet boundary conditions, Neumann boundary conditions and Robin-type

boundary condition, mainly in (2+1)-dimensional, which have motivated the author

to propose a number of mathematical models.

Many researchers have contributed to obtain efficient and reliable tech-

niques for solution of linear/nonlinear differential equations viz., finite difference

method [153], Chebyshev orthogonal collocation technique [154] and Adomian de-

composition method [155], etc. Fractional-order partial differential equations are

usually difficult to solve by the analytical method and thus various numerical meth-

ods are applied to obtain approximate solutions of the equation given in [145, 156,

157, 158, 159, 160, 161, 162, 163].

Study is mainly focused on nonlinear (2+1)-dimensional space-time FRAD

solute transport model in ([0, l]× [0, l]× [0, τ ]) given as follows:

∂αu(x, y, t)

∂tα
= D1(x, y, t)

∂βu(x, y, t)

∂xβ
+D2(x, y, t)

∂βu(x, y, t)

∂yβ
− V1(x, y, t)

∂u(x, y, t)

∂x

− V2(x, y, t)
∂u(x, y, t)

∂y
+ λR(u), (6.1)

where 0 < α ≤ 1, 1 < β ≤ 2,

with initial condition

u(x, y, 0) = ξ1(x, y), 0 ≤ x ≤ l, 0 ≤ y ≤ l, (6.2)

and boundaries conditions

a1u(0, y, t) + a2
∂u(0, y, t)

∂x
= ξ2(y, t), 0 ≤ y ≤ l, 0 ≤ t ≤ τ, (6.3)

a3u(l, y, t) + a4
∂u(l, y, t)

∂x
= ξ3(y, t), 0 ≤ y ≤ l, 0 ≤ t ≤ τ, (6.4)
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a5u(x, 0, t) + a6
∂u(x, 0, t)

∂y
= ξ4(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤ τ, (6.5)

a7u(x, l, t) + a8
∂u(x, l, t)

∂y
= ξ5(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤ τ, (6.6)

where ∂αu(x, y, t)/∂tα, ∂βu(x, y, t)/∂xβ and ∂βu(x, y, t)/∂yβ are fractional deriva-

tives in Caputo sense, ai, i = 1, 2, 3, · · · , 8 are constants, ξj, j = 1, 2, · · · , 5, R(u),

V1(x, y, t), V2(x, y, t), D1(x, y, t) and D2(x, y, t) are known and u(x, y, t) is the un-

known function.

In general it is hard to obtain the exact solution of nonlinear FPDEs, so

numerical and approximate techniques are needed to solve the equations. Legendre

collocation method with operational matrix is reliable to obtained the solution of

nonlinear FPDEs due to the fact that the Legendre polynomials satisfy orthogonality

condition.

The purpose of the chapter is to extend the SLCM for solving fractional-

order nonlinear partial differential equations. Applying shifted Legendre approxi-

mation, shifted Legendre operational matrix (SLOM) for fractional derivative and

Kronecker product for the multi-dimensional space problems. An attempt has been

taken to obtain the approximate solution of the nonlinear (2+1)-dimensional space-

time FRADE with prescribed initial and boundary conditions by using SLCM. The

solution of the integer-order form of the above-considered model has been carried out

during last few decades due to important application of the model and still there is a

penalty of scopes to develop efficient numerical methods to approximate solution for

above type of fractional-order problem. The considered problem is first converted

into system of nonlinear algebraic equations using shifted Legendre polynomial ap-

proximation and operational matrix for derivative. The algebraic equations thus
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obtained are solved using Newton iteration method through MATHEMATICA soft-

ware (version 11.0). The results obtained are displayed graphically for different

particular cases in different fractional-order systems.

In the present endeavor, author has confirmed the accuracy and efficiency

of the proposed method through comparison of the results obtained for a particular

form of the model with existing analytical solutions of the (2+1)-dimensional Fisher

equation. After its validation, the proposed method is applied to solve the considered

nonlinear (2+1)-dimensional space-time FRADE with the help of specified initial and

boundary conditions. The main focus is concerned with the effect of the reaction

term, advection term and also fractional-order parameters on the solution profiles

for different particular cases.

6.2 Implementation of the method

To find the solution of nonlinear (2+1)-dimensional space-time FRADE with initial

and boundaries conditions the shifted Legendre approximation and its derivatives as

given by equations (1.41),(1.50) and (1.51) are applied on the equations (6.1)-(6.2)

which give rise to

(φm,τ (t))
T (D(α))T .U.(φm,l(x)⊗ φm,l(y))−D1(x, y, t)(φm,τ (t))

T .U.(D(β) ⊗ I).(φm,l(x)

⊗ φm,l(y))−D2(x, y, t)(φm,τ (t))
T .U.(I ⊗D(β)).(φm,l(x)⊗ φm,l(y))− V1(x, y, t)

(φm,τ (t))
T .U.(D(α) ⊗ I).(φm,l(x)⊗ φm,l(y))− V2(x, y, t)(φm,τ (t))T .U.(I ⊗D(1))

.(φm,l(x)⊗ φm,l(y))− λR
(

(φm,τ (t))
T .U.(φm,l(x)⊗ φm,l(y))

)
+ (φm,τ (0))T .U

.(φm,l(x)⊗ φm,l(y))− ξ1(x, y) = 0, (6.7)
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and the boundary conditions given by equations (6.3)-(6.6) are reduced to

a1(φm,τ (t))
T .U.(φm,l(0)⊗ φm,l(y)) + a2(φm,τ (t))

T .U.(D(1) ⊗ I).

(φm,l(0)⊗ φm,l(y))− ξ2(y, t) = 0, (6.8)

a3(φm,τ (t))
T .U.(φm,l(l)⊗ φm,l(y)) + a4(φm,τ (t))

T .U.(D(1) ⊗ I).

(φm,l(l)⊗ φm,l(y))− ξ3(y, t) = 0, (6.9)

a5(φm,τ (t))
T .U.(φm,l(x)⊗ φm,l(0)) + a6(φm,τ (t))

T .U.(I ⊗D(1)).

(φm,l(x)⊗ φm,l(0))− ξ4(x, t) = 0, (6.10)

a7(φm,τ (t))
T .U.(φm,l(x)⊗ φm,l(l)) + a8(φm,τ (t))

T .U.(I ⊗D(1)).

(φm,l(x)⊗ φm,l(l))− ξ5(x, t) = 0. (6.11)

Equation (6.7) is collocated at the points (xi, yi, tj) for (m− 1)× (m− 1)× (m+ 1)

points. Equations (6.8) and (6.9) are collocated at the points (yi, tj) for m× (m+1)

and (m+1)×(m+1) points respectively. Equations (6.10) and (6.11) are collocated

at the points (xi, tj) for (m− 1)× (m+ 1) and m× (m+ 1) points respectively. xi

, yi are the shifted Legendre-Gauss-Lobatto (LGL) points of P l
m−1(x), P l

m−1(y) and

tj are the roots of P τ
n+1(t). After collocation equations (6.7)-(6.11) are transformed

into (m+1)×(m+1)2 nonlinear equations for the unknown coefficient vector U . The

system of nonlinear algebraic equations can be solved using Newton iteration method

by mathematical computation for unknown coefficient vector U . The approximate

solution um,m,n(x, y, t) can be found from equation (1.41) by substituting the value

of the unknown matrix U .
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6.3 Solution of solute transport model

Consider the following nonlinear solute transport model in (2+1)-dimensional space-

time FRADE in domain ([0, 1]× [0, 1]× [0, 1]) as

∂αu(x, y, t)

∂tα
=D

(∂βu(x, y, t)

∂xβ
+
∂βu(x, y, t)

∂yβ

)
− V ∂u(x, y, t)

∂x

+ λu(x, y, t)(1− u(x, y, t)), (6.12)

where 0 < α ≤ 1, 1 < β ≤ 2

with initial condition and first type source boundary conditions for finite soil column

length of porous medium given as

u(x, y, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (6.13)

u(0, y, t) = u0 = t, 0 ≤ y ≤ 1, 0 ≤ t ≤ 1, (6.14)

∂u(1, y, t)

∂x
= 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ 1, (6.15)

∂u(x, 0, t)

∂y
= 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (6.16)

∂u(x, 1, t)

∂y
= 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1. (6.17)

The considered nonlinear (2+1)-dimensional space-time FRADE with initial and

boundary conditions have been solved with the method already described.
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6.4 Numerical results and discussion

The values of u(x, y, t)/u0, the normalized solute concentration, are found numer-

ically for m = 6 at fixed time t = 0.5 for the considered mathematical models

of space-time FRADE and space-time FRDE. The effects of reaction and advec-

tion terms for various values of α and β on the solution profile with finite column

length are shown through Figures 6.2-6.7. During computation the parameters are

considered as D = 25 and λ = −0.5.

To validate our proposed method, it is first applied to solve (2+1)-dimensional

Fishers equation (α = 1, β = 2, D = 1 and V = 0) under following conditions:

u(x, y, 0) =

(
1 + exp

(
1√
6

(
x− y√

2

)))−2
,

u(0, y, t) =

(
1 + exp

(
1√
6

(
− y√

2
− 5√

6
t

)))−2
,

u(1, y, t) =

(
1 + exp

(
1√
6

(
1− y√

2

)
− 5√

6
t

))−2
,

u(x, 0, t) =

(
1 + exp

(
1√
6

(
x−

(
5√
6
t

)))−2
,

u(x, 1, t) =

(
1 + exp

(
1√
6

(
x− 1√

2

)
− 5√

6
t

))−2
,
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whose the exact solution is [164]

u(x, y, t) =

(
1 + exp

(
1√
6

(
x− y√

2

)
− 5√

6
t

))−2
.

The absolute errors between the exact solution and the numerical solution

obtained by using our proposed method are calculated and results are displayed

through Figure 6.1 for y = 1 and t = 1. It is seen from Table 6.1 that the absolute

error ERm,n(x, 1, 1) = max
0≤x≤1

|u(x, 1, 1)− um,m,n(x, 1, 1)| decreases as the values of m,

n increase and for m = n = 6 our numerical results become reliable and effective.

This has inspired the author to find the solution of considered model (6.12) using

proposed method for m = n = 6.

As per the definition, um,m,n(x, y, t) converges linearly to u(x, y, t) if there

exists a number µ ∈ (0, 1) such that

lim
m→∞

|um+1,m+1,n+1(x, y, t)− u(x, y, t)|
|um,m,n(x, y, t)− u(x, y, t)|

= µ, (6.18)

where µ is called the rate of convergence.

Letµ1 =
|u4,4,4(x, y, t)− u(x, y, t)|
|u2,2,2(x, y, t)− u(x, y, t)|

andµ2 =
|u6,6,6(x, y, t)− u(x, y, t)|
|u4,4,4(x, y, t)− u(x, y, t)|

, µ1, µ2 ∈ (0, 1),

If µ1 > µ2, it may be concluded that µk varies from step to step and µk → 0 as

k →∞. Therefore our aim is to perform the error to show the superlinearly rate of

convergence of our proposed method.

In Figure 6.2, the variations of normalized solute concentration with the

finite column length for different reaction rate coefficients λ = −1, 0, 1 for the case

of integer-order model RADE (α = 1, β = 2) are shown. It is seen from the figure

that the concentration of solute is less for sink term (λ = −1) as compared to source
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term (λ = 1) as well as for the case of conservative system (λ = 0). In the case of

the integer-order model, the solute concentration covers more column length as time

increases which can be seen from Figure 6.3.

In the case of time-fractional RADE (β = 2), the movement of normalized

concentration for α = 0.4, 0.6, 0.8 and 1 with finite soil column length are shown

in Figure 6.4. It is seen from the figure that the solute concentration in soil col-

umn decreases as α approaches from fractional-order system to integer-order of time

derivative. The solute concentration is less in integer-order system as compared to

fractional-order system. Figure 6.5 shows the variation of normalized solute concen-

tration for time-fractional reaction-diffusion equation (V = 0) when α = 0.4, 0.6, 0.8

and 1. The nature of the solution profile is just the same as the Figure 6.4, but due

to the absence of advection term the concentration of solute is less in each case.

For space-fractional RADE (α = 1), the movement of normalized solute

concentration for β = 1.4, 1.6, 1.8 and 2 with finite soil column length are shown

in Figure 6.6. It is seen from the figure that the solute concentration in soil col-

umn decreases as β approaches from fractional-order system to integer-order of space

derivative. Here also solute concentration is less in integer-order system as compared

to fractional-order system. As the spatial order derivative approaches from integer-

order to fractional-order, the diffusion term approaches to advection term, and as a

result concentration of solute will cover more length in soil column length. Figure

6.7 shows the variation of normalized concentration for space-fractional reaction-

diffusion equation when β = 1.4, 1.6, 1.8 and 2. The nature of the solution profile is

just the same as Figure 6.6, but due to the absence of advection term the concen-

tration of solute is less in each case.
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Table 6.1 Maximum absolute error of Fishers equation with y = 1, t = 1
and different x for m = 2, 4, 6.

x Analytic result u(x, 1, 1) ER2,2(x, 1, 1) ER4,4(x, 1, 1) ER6,6(x, 1, 1)

0 0.528014 9.41254× 10−4 6.34643× 10−6 3.56394× 10−8

0.1 0.516188 7.00066× 10−4 7.4644× 10−5 6.84355× 10−5

0.2 0.504286 5.43200× 10−4 1.09490× 10−4 1.03141× 10−4

0.3 0.492321 4.58923× 10−4 1.18222× 10−4 1.12466× 10−4

0.4 0.480305 4.35094× 10−4 1.07946× 10−4 1.03749× 10−4

0.5 0.468250 4.59209× 10−4 8.55011× 10−5 8.34631× 10−5

0.6 0.456168 5.18437× 10−4 5.74149× 10−5 5.74114× 10−5

0.7 0.444074 5.99667× 10−4 2.98595× 10−5 3.0932× 10−5

0.8 0.431980 6.89558× 10−4 8.6037× 10−6 9.11441× 10−6

0.9 0.419900 7.74585× 10−4 1.03816× 10−6 2.97165× 10−6

1 0.407848 8.41098× 10−4 5.74003× 10−6 3.66204× 10−8

Figure 6.1: The plot of the error function uexact(x, y, 1)− u6,6,6(x, y, 1) for
the Fishers equation.
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Figure 6.2: Plots of normalised concentration factor u(x, y, 0.5)/u0 vs.
column length for λ = −1, 0, 1 when D = 25, V = 50, α = 1, β = 2.

Figure 6.3: Plots of normalised concentration factor u(x, y, t)/u0 vs.
column length for time t = 0.2, 0.4, 0.6, 0.8 when D = 25, V = 50, α = 1,
β = 2.
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Figure 6.4: Plots of normalised concentration factor u(x, y, 0.5)/u0 vs.
column length for different α = 0.4, 0.6, 0.8 and 1 when β = 2, V = 50.

Figure 6.5: Plots of normalised concentration factor u(x, y, 0.5)/u0 vs.
column length for different α = 0.4, 0.6, 0.8 and 1 when β = 2, V = 0.
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Figure 6.6: Plots of normalised concentration factor u(x, y, 0.5)/u0 vs.
column length for different β = 1.4, 1.6, 1.8 and 2 when α = 1, V = 50.

Figure 6.7: Plots of normalised concentration factor u(x, y, 0.5)/u0 vs.
column length for different β = 1.4, 1.6, 1.8 and 2 when α = 1, V = 0.
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6.5 Conclusion

In this chapter, a numerical method called the SLCM using operational matrix

for derivatives is extended for solving the nonlinear (2+1)-dimensional space-time

FRADE. The effectiveness and efficiency of the method are validated through ap-

plying it to a existing nonlinear PDE models of integer-order system having exact

solution and showing the superlinearly convergence rate of the proposed method

through error analysis. The effects of advection term and reaction term on the so-

lution profile for various space and time fractional-order derivatives are graphically

shown for different particular cases. The beauty of the chapter is the explanation of

the decay of the solute concentration when the system approaches to fractional-order

from the integer-order. The authentication of the fact that the concentration of so-

lute will cover more soil column length as diffusion term approaches to advection

term with the decrease in the spatial order derivative is the most important part of

the study.

***********


