
Chapter 5

Study of one-dimensional space-time

fractional-order Burgers-Fisher and

Burgers-Huxley fluid models

5.1 Introduction

Nonlinear RADEs are encountered in several fields of science and engineering, in

which Burgers-Fisher equation (BFE) and Burgers-Huxley equation (BHE) are of

high importance for describing different mechanisms. The BFE and BHE are termed

as mixed hyperbolic-parabolic systems of partial differential equation. These are

found in the field of gas dynamics, applied mathematics, financial mathematics and

traffic flow. The BFE and BHE are prototypical models to explain the interaction

between the reaction mechanisms, advection effect and diffusion transport.

The contents of this chapter have been accepted in Mathematical Methods in the Applied
Sciences

79
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In recent years, there is intensive study on fractional calculus due to its

major applications in various fields viz., chemical, physical, biological, geological

and financial systems. For example, modeling and analysis of reactive solute trans-

port in deformable channels with wall adsorption-desorption [142], the mathematical

model on fractional-order diffusion that describes nondiffusive transport in plasma

turbulence [46] and a non-linear fractional diffusion model for capillary flow through

porous media [47]. Fractional calculus gives more accurate models of systems un-

der consideration [143]. Using fractional derivative as a mathematical tool to get

the development of more robust mathematical model in particular areas of reser-

voir engineering, is gaining attention in both industry and academia. The realistic

mathematical model of any physical phenomena depending on present and previous

time history is achieved when fractional-order derivative is used in place of integer-

order derivative. In particular, the microscopic behaviours of mass transportation in

porous media are complex and the physical phenomena show strange kinetics which

cannot be modeled by classical diffusion equation whereas fractional diffusion equa-

tion explains their microscopic dynamics. The fractional-order form of the law of

conservation of mass is described in the research article [60] during fluid flow. The

mathematical model which describes the solute transport in groundwater are pre-

sented in the articles [79, 144, 145]. The fractional-order form of groundwater flow

problem can be seen in [61, 62] in which authors have generalized the classical Darcy

law by taking the water flow as a function of a non-integer derivative of the Piezo-

metric head. Benson et al. [63, 64] have explained that the fractional-order form of

advection-diffusion equation is useful for contaminant flow in heterogeneous porous

media and earth surfaces such as natural rivers. The fractional-order transport

equations within Liouville equations have been considered to solve the fractional-

order transport equation in disordered semi-conductors [52]. The fractional-order

transport equations are also reported in [56] based on Levy stable processes. Many
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researchers have contributed to get reliable and efficient techniques for the solution of

fractional differential equation [10, 53, 55, 111, 133, 136, 146, 147, 148, 149, 150, 151].

In the present chapter, the study is mainly focused on the following one-

dimensional nonlinear spatial-time FPDE with initial and boundary conditions are

considered as

∂αu(x, t)

∂tα
=
∂βu(x, t)

∂xβ
− ξ u(x, t)

∂u(x, t)

∂x
+ λR(u, x, t), 0 < α ≤ 1, 1 < β ≤ 2,

(5.1)

with initial condition

u(x, 0) = ψ1(x), 0 ≤ x ≤ 1, (5.2)

and boundary conditions

u(0, t) = ψ2(t), 0 < t ≤ 1, (5.3)

u(1, t) = ψ3(t), 0 < t ≤ 1. (5.4)

In general it is hard to obtain the exact solution of nonlinear FPDEs,

so numerical and approximate techniques are needed to solve the equations. As

already discussed that the numerical solutions using various tools are useful to deal

with the nonlinear problems. Legendre collocation method with operational matrix

is reliable to obtained the solution of nonlinear FPDEs due to the fact that the

Legendre polynomials satisfy the orthogonality condition. A truncated orthogonal

series is used in the method during solutions of differential equations. Saadatmandi

and Dehghan [28] have generalized Legendre operational matrix to fractional-order

derivative.
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In the present endeavor, an attempt has been taken to obtain the approxi-

mate solution of the one-dimensional nonlinear space-time FRADE with prescribed

initial and boundary conditions by using shifted Legendre collocation method. The

considered problem is first converted into system of nonlinear algebraic equations us-

ing shifted Legendre polynomial approximation and operational matrix for fractional-

order derivative which are solved using an iteration method. The results obtained

are displayed graphically for different particular cases in different fractional-order

systems. To validate the accuracy and efficiency of the considered method, it has

been applied to two particular existing problems having analytical solutions for

the integer-order case. After comparison of the fractional-order derivative obtained

by Caputo derivative with the shifted Legendre operational matrix and validation

through graph, the author has been motivated to apply the proposed method to

solve the considered space-time fractional-order BFE and BHE.

5.2 Estimation of the error

Let u(x, t) ∈ ([0, 1]× [0, 1]) can be approximated by um,m(x, t) as follows:

u(x, t) ≈ um,m(x, t) =
m∑
i=0

m∑
j=0

ai,jP
1
i (t)P 1

j (x), (5.5)

so that

u(x, t)− um,m(x, t) =
∞∑

i=m+1

∞∑
j=m+1

ai,jP
1
i (t)P 1

j (x). (5.6)

Theorem 1. Let u(x, t) ∈ L2([0, 1] × [0, 1]), um,m(x, t) obtained by using shifted

Legendre polynomials is the approximation of u(x, t) and |∂4u(x, t)/∂x2∂y2|≤ M ,
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then

‖ u(x, t)− um,m(x, t) ‖E≤
M

16

(Γ
′
(m− 0.5)

Γ(m− 0.5)

)′′′
, (5.7)

where ‖ u(x, t) ‖2E=
∫ 1

0

∫ 1

0
u2(x, t)dxdt.

Proof.

‖ u(x, t)− um,m(x, t) ‖2E =

∫ 1

0

∫ 1

0

(u(x, t)− um,m(x, t))2dx dt

=

∫ 1

0

∫ 1

0

∞∑
i=m+1

∞∑
j=m+1

(
ai,jP

1
i (t)P 1

j (x)
)2
dx dt

=
∞∑

i=m+1

∞∑
j=m+1

a2i,j

∫ 1

0

(P 1
i (x))2dx

∫ 1

0

(P 1
j (t))2dt.

Using orthogonality condition of the shifted Legendre sequence given in equation

(1.37), I have

‖ u(x, t)− um,m(x, t) ‖2E=
∞∑

i=m+1

∞∑
j=m+1

a2i,j
1

(2i+ 1)(2j + 1)
. (5.8)

The shifted Legendre polynomial coefficients ai,j of the function u(x, t) are given by

ai,j = (2i+ 1)(2j + 1)

∫ 1

0

∫ 1

0

u(x, t)P 1
i (x)P 1

j (t)dxdt.
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Solving the above equation, we get

ai,j = (2j + 1)

∫ 1

0

u(x, t)(P 1
i+1(x)− P 1

i−1(x))P 1
j (t)|10dt

− (2j + 1)

∫ 1

0

∫ 1

0

∂u(x, t)

∂x
(P 1

i+1(x)− P 1
i−1(x))P 1

j (t)dxdt

= −(2j + 1)

∫ 1

0

∫ 1

0

∂u(x, t)

∂x
(P 1

i+1(x)− P 1
i−1(x))P 1

j (t)dxdt

= −(2j + 1)

∫ 1

0

∂u(x, t)

∂x

(P 1
i+2(x)− P 1

i (x)

2i+ 3
−
P 1
i (x)− P 1

i−2(x)

2i− 1

)
P 1
j (t)|10dt

+ (2j + 1)

∫ 1

0

∫ 1

0

∂2u(x, t)

∂x2

(P 1
i+2(x)− P 1

i (x)

2i+ 3
−
P 1
i (x)− P 1

i−2(x)

2i− 1

)
P 1
j (t)dxdt,

= (2j + 1)

∫ 1

0

∫ 1

0

∂2u(x, t)

∂x2

(P 1
i+2(x)− P 1

i (x)

2i+ 3
−
P 1
i (x)− P 1

i−2(x)

2i− 1

)
P 1
j (t)dxdt.

Now considering Qi(x) = (2i− 1)P 1
i+2(x)− 2(2i+ 1)P 1

i (x) + (2i+ 3)P 1
i−2(x), we get

ai,j =
(2j + 1)

(2i− 1)(2i+ 3)

∫ 1

0

∫ 1

0

∂2u(x, t)

∂x2
Qi(x)P 1

j (t)dxdt.

Again solving the above equation, we have

ai,j =
1

(2i− 1)(2i+ 3)(2j − 1)(2j + 3)

∫ 1

0

∫ 1

0

∂4u(x, t)

∂x2∂y2
Qi(x)Qj(t)dxdt.

Therefore

|ai,j|≤
1

(2i− 1)(2i+ 3)(2j − 1)(2j + 3)

∫ 1

0

∫ 1

0

|∂
4u(x, t)

∂x2∂y2
|.|Qi(x)|.|Qj(t)|dxdt.

Hence

|ai,j|≤
M

(2i− 1)(2i+ 3)(2j − 1)(2j + 3)

∫ 1

0

|Qi(x)|dx
∫ 1

0

|Qj(t)|dt.
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As
∫ 1

0
|Qi(x)|dx =

√
24

2
.
(2i+ 3)√

2i− 3
, the above inequality becomes

|ai,j|≤
6M

(2i− 1)(2i+ 3)(2j − 1)(2j + 3)
.
(2i+ 3)√

2i− 3
.
(2j + 3)√

2j − 3
.

Thus

|ai,j|2≤
36M2

(2i− 3)3(2j − 3)3
.

Substituting the value of a2i,j in the equation (5.8), we get

‖ u(x, t)− um,m(x, t) ‖2E ≤
∞∑

i=m+1

∞∑
j=m+1

36M2

(2i− 3)3(2j − 3)3
.

1

(2i+ 1)(2j + 1)

≤
∞∑

i=m+1

∞∑
j=m+1

36M2

(2i− 3)4(2j − 3)4

≤
( ∞∑
i=m+1

6M

(2i− 3)4

)2
=

1

4

[(M
8

Γ
′
(m− 0.5)

Γ(m− 0.5)

)′′′]2
.

Therefore

‖ u(x, t)− um,m(x, t) ‖E≤
M

16

(Γ
′
(m− 0.5)

Γ(m− 0.5)

)′′′
. (5.9)

5.3 Solution of the fractional-order partial differ-

ential equations

To solve the nonlinear space-time FRADE (5.1) with initial and boundary conditions

(5.2)-(5.4), the function u(x, t) ∈ ([0, 1]× [0, 1]) is approximated by shifted Legendre
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polynomial as

u(x, t) ≈ φTm,1(t).A.φm,1(x). (5.10)

Then derivatives are defined as

∂αu(x, t)

∂tα
≈
∂α(φTm,1(t).A.φm,1(x))

∂tα
=
(∂αφm,1(t)

∂tα

)T
.A.φm,1(x)

= φTm,1(t).(D
(α))T .A.φm,1(x), (5.11)

∂βu(x, t)

∂xβ
≈
∂β(φTm,1(t).A.φm,1(x))

∂xβ
= φTm,1(t).A.

∂βφm,1(x)

∂xβ

= φTm,1(t).A.(D
(β).φm,1(x)), (5.12)

∂u(x, t)

∂x
≈
∂(φTm,1(t).A.φm,1(x))

∂x
= φTm,1(t).A.

∂φm,1(x)

∂x

= φTm,1(t).A.(D
(1).φm,1(x)). (5.13)

Substituting equations (5.10)-(5.13) into equations (5.1) and (5.2), we have

φTm,1(t).(D
(α))T .A.φm,1(x) = φTm,1(t).A.D

(β).φm,1(x)− ξ(φTm,1(t).A.φm,1(x))

(φTm,1(t).A.D
(1).φm,1(x)) + λR((φTm,1(t).A.φm,1(x)), x, t), (5.14)

φTm,1(0).A.φm,1(x) = ψ1(x), (5.15)

Equations (5.14) and (5.15) are rewritten as

H(x, t) = D(α)φTm,1(t).A.φm,1(x)− φTm,1(t).A.D(β).φm,1(x)

+ ξ (φTm,1(t).A.φm,1(x)) (φTm,1(t).A.D
(1).φm,1(x))

− λR(φTm,1(t).A.φm,1(x), x, t) + φTm,1(0).A.φm,1(x)− ψ1(x), (5.16)
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and boundary conditions (5.3)-(5.4) become

φTm,1(t).A.φm,1(0) = ψ2(t), (5.17)

φTm,1(t).A.φm,1(1) = ψ3(t). (5.18)

Equation (5.16) is collocated at (xi, tj) for (m− 1)× (m + 1) points and equations

(5.17) and (5.18) are collocated at tj for (m+1) points respectively where xi’s are the

shifted Legendre-Gauss-Lobatto (SLGL) points of P l
m−1(x) and t′js are the roots of

shifted Legendre polynomial P τ
m+1(t). After collocation (m+ 1)× (m+ 1) nonlinear

equations for (m+ 1)× (m+ 1) unknowns are obtained which are given as follows:

H(xi, tj) = D(α).φTm,1(tj).A.φm,1(xi)− φTm,1(tj).A.D(β) .φm,1(xi)

+ ξ (φTm,1(tj).A.φm,1(xi)) (φTm,1(tj).A.D
(1).φm,1(xi))

− λR(φTm,1(tj).A.φm,1(xi), xi, tj) + φTm,1(0).A.φm,1(xi)− ψ1(xi) = 0,

(5.19)

and

φTm,1(tj).A.φm,1(0)− ψ2(tj) = 0, (5.20)

φTm,1(tj).A.φm,1(1)− ψ3(tj) = 0. (5.21)

The system of nonlinear equations are solved using Newton iteration method for

(m + 1) × (m + 1) unknown entries of unknown matrix A. Consequently approx-

imate solution um,m(x, t) given by equation (1.40) can be calculated with simple

computation.
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5.4 Mathematical models

In the present chapter, I have extended the well known BFE and BHE to space-

time fractional-order BFE and BHE. Mathematical models of space-time fractional-

order BFE and BHE are realistic mathematical models having physical phenomena

of dependence not only at the time instant, but also the previous time history.

The solutions of the considered problems predict the concentration u(x, t) of solute

(impurity) which contaminate the groundwater by transportation in soil column

through porous media from land surface to groundwater level. Initial condition (at

t = 0) is taken in such a way that the concentration of solute, initially in the soil

column of finite length is zero. And the boundary conditions are such that, the

concentration of solute at inlet boundary (x = 0) linearly increases with time and

at outlet boundary (x = 1) is constant with respect to column length of the soil

column.

5.4.1 Space-time fractional-order Burgers-Fisher equation

The considered one-dimensional space-time fractional-order BFE with initial and

boundary conditions in a bounded space domain [0, 1] is given as

∂αu(x, t)

∂tα
=
∂βu(x, t)

∂xβ
+ u(x, t)

∂u(x, t)

∂x
+ λu(x, t)(1− u(x, t)),

0 < α ≤ 1, 1 < β ≤ 2, (5.22)

with the following initial and first type source boundary conditions as

u(x, 0) = 0, 0 ≤ x ≤ 1, (5.23)
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u(0, t) = u0 = t, t > 0, (5.24)

∂u(1, t)

∂x
= 0, t > 0. (5.25)

5.4.2 Space-time fractional-order Burgers-Huxley equation

The considered one-dimensional space-time fractional-order BHE with initial and

boundary conditions in a boundary space domain [0, 1] is given as

∂αu(x, t)

∂tα
=
∂βu(x, t)

∂xβ
+ u(x, t)

∂u(x, t)

∂x
+ λu(x, t)(1− u(x, t))(u(x, t)− 1),

0 < α ≤ 1, 1 < β ≤ 2, (5.26)

with the following initial and first type source boundary conditions as

u(x, 0) = 0, 0 ≤ x ≤ 1, (5.27)

u(0, t) = u0 = t, t > 0, (5.28)

∂u(1, t)

∂x
= 0, t > 0. (5.29)

The considered space-time fractional-order BFE and BHE with given initial

and boundary conditions have been solved with the method described in section 5.3.

5.5 Numerical results and discussion

To illustrate the validity and applicability of the approach, we apply the method

to solve the integer-order BFE and BHE (α = 1, β = 2, λ = 1) which have exact

solutions under the prescribed initial and boundary conditions. The integer-order
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BFE under the following initial and boundary conditions

u(x, 0) =
1

2
+

1

2
tanh

(x
4

)
, (5.30)

u(0, t) =
1

2
+

1

2
tanh

(5

8
t
)
, (5.31)

u(1, t) =
1

2
+

1

2
tanh

(1

4

(
1 +

5

2
t
))
, (5.32)

has the exact solution as [152]

u(x, t) =
1

2
+

1

2
tanh

(1

4

(
x+

5

2
t
))
. (5.33)

Also the integer-order BHE under the suitable initial and boundary conditions as

u(x, 0) =
1

2
− 1

2
tanh

(1

4
x
)
, (5.34)

u(0, t) =
1

2
− 1

2
tanh

(3

8
t
)
, (5.35)

u(1, t) =
1

2
− 1

2
tanh

(1

4

(
1 +

3

2
t
))
, (5.36)

has the exact solution as [152]

u(x, t) =
1

2
− 1

2
tanh

(1

4

(
x+

3

2
t
))
. (5.37)

We have found the absolute errors (ERj(x, t)) and orders of convergence (CO) for

discrete points which are given as

ERj(x, t) = |u(x, t)− uj,j(x, t)| and CO(j) =
log
(
ERj(x, t)/ERj+1(x, t)

)
log
(

(j + 1)/j
) ,

and found between our obtained numerical results and the exact solutions for both

the problems and the results are displayed through Tables 5.1-5.2. In the case of

BFE, Table 5.1 shows that the order of convergence increases as the shifted Legendre
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polynomial approximation increases. Similarly, in the case of BHE, the order of

convergence increases rapidly as the approximated degree of the polynomial increases

as shown in Table 5.2. The test examples demonstrate the efficiency, versatility and

accuracy of the proposed method. It confirms that the proposed numerical method

gives better results for nonlinear PDEs. After the successful validation of the method

for integer-order models, the author is motivated to apply the proposed method to

solve the concerned models in time and space fractional-orders.

The numerical values of the normalized solute concentration u(x, t)/u0 are

calculated for m = 12 at fixed time t = 0.5 for the considered mathematical mod-

els of porous media with space-time fractional derivatives for both BFE and BHE

equations with finite column length for various values of α and β and the results are

depicted through Figures 5.1-5.5.

In Figure 5.1, the movements of the normalized solute concentration with

the finite column length are shown for time-fractional derivative i.e., α = 0.6, 0.7, 0.8,

0.9, 1 for time fractional-order BFE (β = 2). Similar behaviour can be seen for time

fractional-order BHE (β = 2) in Figure 5.3. It is seen from the figures that as the

parameter α approaches from fractional-order to the integer-order the normalized

concentration decreases. It is also observed that the solute covers less length in soil

column for integer-order case as compared to fractional-order case.

In Figure 5.2, the movements of the normalized solute concentration with

the finite column length are shown with the variation of space-fractional derivative

(β = 1.6, 1.7, 1.8, 1.9, 2) in the case of space fractional-order BFE (α = 1). Similar

behaviour can be seen for space fractional-order BHE in Figure 5.4. It is seen

from the figures that as the parameter β approaches from fractional-order to the

integer-order the normalized concentration decreases. For the case of integer-order

system (α = 1, β = 2), the solute covers less length in the soil column compared to
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fractional-order system. As the spatial order derivative decreases, the diffusive term

approaches to advection term, and as a result the concentration of solute will cover

more soil column length.

The effect of the reaction term, on the solution profile is expressed through

Figure 5.5. The movement of solute concentration is similar for conservative (λ = 0)

and non-conservative systems (BFE, BHE). The normalized solute concentration

covers more column length in the case of BFE compared to the conservative system

due to the effect of source term (u(x, t)(1 − u(x, t)) > 0) in BFE and it is less for

the case of BHE compared to the conservative system due to the effect of sink term

(u(x, t)(1− u(x, t))(u(x, t)− 1) < 0) in BHE which are physically justified.

Table 5.1 Maximum absolute error and order of convergence of BFE with
t = 0.5 and different x for m = 3, 6 and 12

x ER3(x, 0.5) ER6(x, 0.5) ER12(x, 0.5) CO(3) CO(6)

0.1 2.03493× 10−4 3.03610× 10−6 2.50293× 10−9 6.06661 10.2444

0.2 3.41039× 10−4 4.98004× 10−6 4.60862× 10−9 6.09764 10.0776

0.3 4.21791× 10−4 6.37079× 10−6 6.13964× 10−9 6.04891 10.0191

0.4 4.54119× 10−4 7.11294× 10−6 6.98383× 10−9 5.99648 9.99221

0.5 4.45601× 10−4 7.17704× 10−6 7.10239× 10−9 5.95622 9.98087

0.6 4.03019× 10−4 6.59908× 10−6 6.52979× 10−9 5.93244 9.98101

0.7 3.32359× 10−4 5.47414× 10−6 5.36617× 10−9 5.92397 9.99452

0.8 2.38818× 10−4 3.94469× 10−6 3.76369× 10−9 5.91986 10.0335

0.9 1.26813× 10−4 2.18381× 10−6 1.90838× 10−9 5.85971 10.1603
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Table 5.2 Maximum absolute error and order of convergence of BHE with
t = 0.5 and different x for m = 3, 6 and 12

x ER3(x, 0.5) ER6(x, 0.5) ER12(x, 0.5) CO(3) CO(6)

0.1 1.22006× 10−4 1.51746× 10−7 1.66030× 10−11 9.65108 13.1579

0.2 1.86267× 10−4 2.62709× 10−7 3.09349× 10−11 9.46969 13.0519

0.3 2.05453× 10−4 3.58042× 10−7 4.17091× 10−11 9.16446 13.0675

0.4 1.91603× 10−4 4.21728× 10−7 4.80435× 10−11 8.82759 13.0997

0.5 1.56083× 10−4 4.39185× 10−7 4.95181× 10−11 8.47327 13.1146

0.6 1.09548× 10−4 4.06287× 10−7 4.61907× 10−11 8.07485 13.0719

0.7 1.19127× 10−4 3.32075× 10−7 3.85655× 10−11 8.48678 13.0602

0.8 1.23278× 10−4 2.35105× 10−7 2.75255× 10−11 9.03439 13.0602

0.9 8.35988× 10−5 1.33479× 10−7 1.42311× 10−11 9.29907 13.1953

Figure 5.1: Plots of normalised concentration factor vs. column length
with first type source boundary condition for space-time fractional-order
BFE when α = 0.6, 0.7, 0.8, 0.9 and 1 at fixed β = 2.



Chapter 5. Study of one-dimensional space-time fractional-order Burgers... 94

Figure 5.2: Plots of normalised concentration factor vs. column length
with first type source boundary condition for space-time fractional-order
BFE when β = 1.6, 1.7, 1.8, 1.9 and 2 at fixed α = 1.

Figure 5.3: Plots of normalised concentration factor vs. column length
with first type source boundary condition for space-time fractional-order
BHE when α = 0.6, 0.7, 0.8, 0.9 and 1 at fixed β = 2.
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Figure 5.4: Plots of normalised concentration factor vs. column length
with first type source boundary condition for space-time fractional-order
BHE when β = 1.6, 1.7, 1.8, 1.9 and 2 at fixed α = 1.

Figure 5.5: Plots of normalised concentration factor u(x, 1) vs. column
length with first type source boundary condition for BFE, BHE and λ = 0
when α = 1, β = 2.
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5.6 Conclusion

In this chapter, a drive has been taken to solve particular types of nonlinear space-

time FRADE by using shifted Legendre collocation method with the aid of opera-

tional matrix. The method easily reduces the corresponding nonlinear FPDE to a

system of nonlinear algebraic equations which is easily solvable. The method pro-

vides a highly accurate solution as the order of convergence increases by increasing

the degree of approximation of shifted Legendre polynomials. Particular cases of

the space-time fractional-order BFE and BHE with initial and boundary conditions

have been solved. The microscopic behaviour of mass transportation in porous me-

dia equation is shown through applications in space-time fractional BFE and BHE.

For this purpose the variations of normalized solute concentrations are presented

graphically. The main contribution of the present research work is the pictorial

presentations of the possibility of covering more soil length by the solute concentra-

tion with the decrease in spatial derivative for space fractional-order BFE and BHE

due to the reason that the diffusion term approaches towards advection term. The

variations of solution profiles for time fractional-order BFE and BHE are also dis-

cussed. Another important contribution of the chapter is the graphical showcasing

of the effects of reaction terms on the solution profiles for the considered problems

for both conservative and nonconservative cases. The author believes that the pro-

posed numerical method will be useful for solving various types of nonlinear PDEs

in fractional-order as well as integer-order systems.

***********


