
Chapter 3

Numerical solution of fractional-order

advection-reaction-diffusion equation

3.1 Introduction

It is known to us that the process diffusion is a physical process where molecules of

a material move from an area of high concentration to an area of low concentration.

The word had been derived from the Latin word diffundere, which means spread out

of a substance from an area of high concentration to an area of low concentration.

An important feature of diffusion is that it is dependent on particle random walk.

Diffusion usually occurs in a solution in gas or in a liquid. It describes the constant

movement of particles in all directions bumping into each other in all kinds of liquids

and gases.

The contents of this chapter have been published in Thermal Science, (1), 22(2018) S309-
S316.

55



Chapter 3. Numerical solution of fractional-order advection-reaction... 56

Diffusion is important to living things as it explains how useful materials

and waste products can move from high concentration to the low concentration of

the cells. We know that the quantity of O2 is more in lung than in the blood, while

there is more CO2 molecules in the blood than in the lung. So O2 molecules will

tend to move from lung into the blood, whereas CO2 molecules will tend to move

into the lung from blood. In cell biology, the small molecules are simply diffused

through the cell membrane, but larger molecules only get through using energy.

The spontaneous movement of particles occurring due to the difference of

concentration between substances or molecules between two areas (along the con-

centration gradient) is relative to the phenomena of diffusion. In biology, diffusion

is a type of passive transport which means that it is a net movement of molecules

in and out of the cell through the cell membrane. Diffusion does not involve chem-

ical energy unlike the case of active transport. Facilitated diffusion occurs when

molecules diffuse via special transport proteins found within the membrane.

Physically the diffusion or advection-diffusion equation becomes useful to

investigate the catalytic processes in regular, heterogeneous, or disordered systems

[97, 98]. Another example is an irreversible first-order reaction of transported sub-

stance so that the rate of removal is proportional to the field variable as given by

Crank et al. [99]. The above type of anomalous diffusion is a ubiquitous phenomenon

in nature and appears in different branches of science and engineering.

Einstein’s theory of Brownian motion reveals that the mean square dis-

placement of a particle moving randomly is proportional to time. But after the

advancement of fractional calculus, it is seen that the mean square displacement

for an anomalous diffusion equation having time fractional derivative grows slowly

with time. For the simple fractional order diffusion equation (∂αu/∂tα = ∂2u/∂x2),

the mean square displacement is X2(t) ≈ tα , where 0 < α < 1 is the anomalous
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diffusion exponent. An important characteristic of this evolution equation is that

it generates the fractional Brownian motion, a generalization of Brownian motion.

If we replace the integer order with fractional order time derivative, it changes the

fundamental concept of time and thus the concept of evolution in the foundations

of physics. The fractional order derivative has a physical meaning related to the

statistics of waiting times according to the Montroll-Weiss theory. The relation was

established by R. Hilfer through his two research articles. Through the first one, Hil-

fer and Anton [100] showed that Montroll-Weiss continuous time random walks with

a Mittag-Leffler waiting time density are rigorously equivalent to a fractional master

equation. After that through the other article [101] explained that this underlying

random walk the model is connected to the fractional time diffusion equation in

the usual asymptotic sense of long times and large distances. Thus for simulating

diffusive phenomena of a simple model it needs the random walk approach.

Gorenflo et al. [102] have given an important result stating that the time

fractional diffusion of order α, 0 < α < 1 generates a class of symmetric densi-

ties whose moments of order 2m are proportional to the mα power of time. We

thus obtain a class of Non-Markovian stochastic processes, which exhibits a vari-

ance consistent with slow anomalous diffusion. Metzeler et al. [57] have shown

that anomalous diffusion is based upon Boltzman statistics using fractional order

Fokker-Plank equation approach. Many researchers have used fractional equations

during description of Levy flights or diverging diffusion. Since ultimate behavior of

the fractional order system response converges to the response of the integer-order

version of the model, therefore the fractional calculus is known as the extension of

classical mathematics. In the last two decades, fractional differential equations have

been widely used by the researchers not only in science and engineering but also in

economics and finance. It is also a powerful tool in modeling multi scale problems,
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characterized by wide time or length scale. The attribute of the fractional order

differential operator is its non-local property, which takes into account the fact that

the future state not only depends upon the present state but also upon all of the

history of its previous states. Nowadays, the fractional order system has gained

popularity in the investigation of dynamical system since it allows greater flexibility

in the model.

Before penetrating from mathematics of fractional calculus to the physical

systems, one should have to keep in mind two things, firstly to analyze the impor-

tance and physical influence of the memory effects on time and secondly to give

proper interpretation of general meaning of non integer operator. The main advan-

tage of the fractional calculus is that it provides an excellent instrument for the de-

scription of memory effect of various materials and processes. Fractional derivatives

and integrals are useful to explore the characteristic features of anomalous diffusion,

transport and fractal walks through setting up of fractional kinetic equations, which

are very much useful in the context of anomalous sub-diffusion [58]. The fractional

diffusion equation, which demonstrates the occurrence of anomalous sub-diffusion,

had already been given an intensive effort to find the accurate solution in straight

forward manner [103]. The fractional diffusion equation is useful to describe reac-

tions in the dispersive transport media [104]. Anomalous diffusion processes occur

in many physical systems for various reasons including disorder in terms of energy or

space or both [105]. Fractional reaction-diffusion equations or continuous time ran-

dom walk models are also introduced for the description of propagating fronts and

two species reactions in sub-diffusive transport media [106]. Chen et al. [107] have

proposed an implicit difference approximation scheme (IDAS) for solving fractional

diffusion equation. Schot et al. [108] have given an approximate solution of the

diffusion equation in terms of Fox H-function. Zahran [109] has given a closed form



Chapter 3. Numerical solution of fractional-order advection-reaction... 59

solution in terms of Fox H-function of the generalized fractional reaction-diffusion

equation. Many research on fractional order diffusion equations have already been

done in [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124].

Analytic inversion of the Laplace transform is defined as contour integra-

tion in the complex plane employing the Cauchy’s residue theorem by taking the

Bromwich contour. For complicated F (s) = L[f(t)] , it is too difficult to perform

even using symbolic softwares like MATLAB or MATHEMATICA. Therefore it is

needed to study some alternative methods [125, 126, 127, 128, 129, 130, 131] to

tackle the problem. Bellman et al. [131] proposed a numerical method known as to

calculate the inverse Laplace transformation. The other popular methods are the

Numerical integral method and the Fast Fourier Transform (FFT). The comparison

of applicability and accuracy among these methods and the Bellman method was

studied by Ueda [132]. In the Bellman method only a few values are sufficient for

the inverting process. Therefore this method is useful to the problems that require

long CPU time to calculate the values in the Laplace transformed domain. In both

the Numerical integral method and FFT method, few parameters are required. In

the first one much CPU time is required to invert the problem whereas in the second

one it is carried out in less time through proper choices of suitable parameters. In

the Bellman method the inverse Laplace transform is evaluated at the roots of the

shifted Legendre polynomial with the help of Gaussian quadrature formula taking

the corresponding weight function and finally the function f(t) can be calculated

using interpolation.

In this chapter the author has made an endeavour to solve a non- conserva-

tive fractional order diffusion equation with boundary conditions through converting

it in the frequency domain using Laplace transform technique. To get the solution

in time domain, the Inverse Laplace transform is done using Bellman method. The
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results obtained using the method for different particular cases clearly exhibit that

the method is reliable and easy to implement to get the solution in the time domain.

3.2 Solution of the mathematical model

Let us consider the fractional order advection-diffusion equation with reaction term

as

∂αu(x, t)

∂tα
=
∂2u(x, t)

∂x2
− V.∂u(x, t)

∂x
− λu(x, t), 0 < α < 1, (3.1)

with u(x, 0) = 0, u(0, t) = u0 and u(x, t) is finite.

Taking the Laplace transformation on both sides we get

∂2ū(x, s)

∂x2
− V ∂ū(x, s)

∂x
− (sα + λ)ū(x, s) = 0, (3.2)

where

ū(x, s) =

∫ ∞
0

u(x, t) exp−st dt.

The solution of the equation (3.2) can be written as

ū(x, s) = c1(s)e

V |x|
2 e

−

√√√√
sα+λ+

V 2

4
. |x|
.

Now,

ū(0, s) = c1(s) =

∫ ∞
0

u0e
−stdt =

u0
s
.
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Therefore,

ū(x, s) =
u0
s
e

V x

2 e−
√

(sα+λ1).|x|, (3.3)

where λ1 = λ+ V 2/4.

Finally by applying inverse Laplace transformation, we get

u(x, t) = L−1
[u0
s
e

V x

2 e−
√

(sα+λ1).|x|
]

u(x, t) = u0.e

V x

2 L−1
[e−√(sα+λ1).|x|

s

]
(3.4)

The 2k − th moment of ū(x, s) is given by

M2k(s) = 2

∫ ∞
0

x2kū(x, s) dx =
2u0
s

∫ ∞
0

x2ke
−
(√

(sα+λ)−
V

2

)
x

dx

=
2u0
s
.

Γ(2k + 1)(√
sα + λ1 −

V

2

)(2k+1)
(3.5)

Now considering

(√
sα + λ1 −

V

2

)2k+1

=
(√

sα + λ1

)2k+1(
1− V

2
√
sα + λ1

)2k+1

≈
(
sα + λ1

)(2k + 1)

2 ≈ s
(2k+1)

α

2 .
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Therefore,

M2k(s) ≈
2u0Γ(2k + 1)

s
(2k+1)

α

2

. (3.6)

Hence the 2k-th moments in the time domain are obtained as

M2k(t) ≈
2u0Γ(2k + 1)

Γ((2k + 1)α/2 + 1)
t(2k+1)α/2. (3.7)

Thus

〈X2(t)〉 ≈ t3α/2, (3.8)

which clearly shows that the fractional order advection-reaction-diffusion equation

represents an evolutionary process.

3.3 Results and discussion

The numerical values of the normalized field variable u(x, t)/u0 for various time

and for different values of α = 0.7, 0.8, 0.9, 1.0 when u0 = 1, x = 1 and V = 0.6

are calculated for both conservative and non-conservative systems using Bellman

method. During numerical computation the variation of probability density function

u(x, t) is compared with the existing analytical result for standard order diffusion

equation i.e.,

u(x, t) = u0 erfc
( x

2
√
t

)
,
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for V = 0 and λ = 0 at α = 1 which is depicted through Figure 3.1. The numerical

results which are depicted through the figure in absence of advection and reaction

terms in standard order conservative system clearly exhibit that the method is ef-

fective and reliable. This has motivated me to apply our concerned method to find

the numerical solution of our considered model for non-conservative case (λ 6= 0) for

different particular cases. It is seen from Figures 3.2-3.3 that for both conservative

and non-conservative systems u(x, t) increase with the increase of time for fractional

order as well as standard order cases. It is also found that for both the cases the

values of u(x, t) initially decrease as α increases and after a while the results become

opposite. The important part of the study is the effect of damping u(x, t) due to the

presence reaction term for non-conservative case as compared to the conservative

case.

Figure 3.1: Comparison of variation of u(x, t)/u0 vs.t with analytical
result for u0 = x = 1 and V = λ = 0 at α = 1.
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Figure 3.2: Plots of u(x, t)/u0 vs. t at α = 0.7, 0.8, 0.9, 1.0, V = 0.6 for
conservation case (λ = 0).

Figure 3.3: Plots of u(x, t)/u0 vs. t at α = 0.7, 0.8, 0.9, 1.0, V = 0.6 for
non-conservation case (λ = 0.6).
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3.4 Conclusion

The author has achieved three important goals through this scientific contribution.

The first one is the solution of the fractional order reaction diffusion equation using

Laplace transformation method and also using it to exhibit the stochastic nature

of the model through calculations of moments. The second one is a comparison of

the result with an existing result for conservative case to validate the efficiency of

the Bellman method. The advantages of using the method over the other existing

numerical methods are only a few numbers of values are required to get the complete

solution and also much less time is required to solve the problem. The third one is the

showcasing of the damping nature of the solution through graphical presentations

for non-conservative case due to effect of reaction term.
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