
Chapter 2

Numerical solution of nonlinear reaction-

advection-diffusion equation

2.1 Introduction

Nonlinear partial differential equations are widely used in recent years to evalu-

ate the various physical phenomena in science and engineering. These are used to

describe complex phenomena in fluid mechanics, plasma physics, quantum mechan-

ics, nonlinear optics, solid state physics, physical chemistry, and numerous areas

of mathematical modeling. Since it is difficult to obtain the analytical solutions

of nonlinear PDEs, a number of numerical methods have been proposed by the re-

searchers to solve these nonlinear PDEs. The reaction-advection-diffusion equation

forms a very important particular class of partial differential equations. Due to

the parabolic nature of the PDE, the solution or approximation of the RADE is a
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formidable task and has become a subject of great interest to researchers. RADEs

have been widely applied in mathematical modeling of a diverse range of natural

phenomena. For instance, in environmental engineering, the RADE serves as an

important water quality model since water pollution is a serious problem for liv-

ing things. Contamination of groundwater, for example, from septic tank waste

can have serious health effects if used for drinking and may cause diseases such as

hepatitis and dysentery. Contaminated groundwater can also harm wildlife. The

harmful chemical deposits into groundwater go through porous media from surface

water to groundwater. It is noticed that over a long period of time in groundwater

reservoirs, many chemicals are seen to undergo reactive decay. It is also seen as sur-

face water is transported to the groundwater through the open fractures and caverns

without filtering. Nonlinear advection-diffusion equations are mathematical models

for groundwater hydrology to model the transportation of passive tracers carried by

fluid flow in a porous medium. Discussions on the role of mathematical modeling in

groundwater resource management can be found in ref. [79]. The analysis of the re-

source potential and prediction of future impact on the environment in groundwater

modeling have been studied by many researchers. Sufficient research works in ex-

periments and theoretical studies towards the prediction of movement and behavior

of solute concentration are found during the literature survey. A large number of

scientists and engineers are engaged to investigate the possibilities of contamination

of the subsurface environment, which have contributed a tremendous impact on the

research of solute transport phenomena in porous media.

Presently, water-quality problems involve the application of the ADE. The

ADE with specific initial and boundary conditions explains special and temporal

variations in solute concentration. In case of steady and uniform flow, the ADE may

be considered with a constant parameter which is the simple form of the governing
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equation. The considered system, which is physically a transported phenomenon,

is one dimensional in which solute concentration is well mixed horizontally and

vertically such that concentration varies only in the longitudinal or downstream

direction. The steady and uniform flow field is imposed and as result effects of

diffusion are spatially constant.

The mathematical model which describes the solute transport in ground-

water was presented in [80]. The mathematical model of ADE describes phenomena

where various physical quantities viz., particles, energy or other quantities are trans-

ferred to a physical system due to diffusion and advection processes. In the present

chapter, the mass transport of a dissolved solute or movement of a component in a

gas mixture is proposed. Diffusion will take place in the soil column due to concen-

tration gradients and if there is bulk fluid motion, then advection will also contribute

to the flux of chemical species. The determination of the combined effect of both

advection and diffusion with reaction term on the solution profile is not an easy

task. Thus, the present chapter deals with computation for mathematical models

described above with a reliable technique that requires less computational work com-

pared to the existing methods used to solve nonlinear systems. The concentration

distribution behavior with space and time is a PDE of parabolic type. The general

one-dimensional advection-diffusion equation with nonlinear reaction term is defined

as

∂u(x, t)

∂t
+ V

∂u(x, t)

∂x
= D

∂2u(x, t)

∂x2
+ λ f(u), (2.1)

where u(x, t) is the solute concentration, x is the spatial coordinate, t is the time,

D is the diffusion coefficient, V is the average fluid velocity, λ is rate coefficient and

f(u) is reaction term represents the capacity of the internal source or sink. The

dispersion term in the equation (2.1) causing the spreading of fluid is composed of
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molecular and mechanical dispersions, which generally cannot be distinguished in

Darcy scale. The mechanical dispersion increases with the increase in the speed of

the fluid flow. If λ = 0 , the equation (2.1) represents simply a linear ADE whose

center of mass is V t and a measure of dispersion is 2Dt . If λ < 0, The equation

(2.1) is called the RADE. Here the reaction term causes the damping of the solute

concentration. If f(u) = u, then < X2(t) >∼ t3α/2 , which shows that the linear

RADE represents an evolutionary process. This has motivated the author to the

study of ADE with the presence of a nonlinear reaction term.

The ADE physically interprets the phenomena that particles’ activities vary

with time due to the transportation of fluid streams, and its spreading and mass

transfers through the channel in which the streams flow. The said equation derived

from the conservative principle of continuum mechanics and phenomenology laws

is considered in a microscopic sense without reference to any microscopic analysis.

When a particle is undergoing in Brownian motion, its displacement and velocity

directions will be changed with time unit. But in a shorter time scale, it is found

to be a continuous ballistic path which will be revealed by the random walk with

uncorrelated steps. In this case to describe the motion of a particle, a deterministic

model is more suitable than a stochastic model. The equation is widely used in

physics and engineering for the descriptions of earth surface processes related to

sediment transport, landscape evolution, solute transport, suspended transport and

also in the investigations on the evolution of braiding rivers, suspension and bedload

transport, etc.

There are many analytic and numerical solutions present in the literature

[81, 82, 83, 84, 85, 86, 87, 88, 89, 90] for one, two and three-dimensional linear

advection-diffusion equations with different forms of initial and boundary condi-

tions. The modeling of solute transport and its analytical solution was given in
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[91]. Savovic and Djordjevich [92] have solved the one-dimensional ADE in semi-

infinite media using an explicit FDM. In the following year, the authors Djordjevich

and Savovic [93] have used the same method to solve the two-dimensional solute

transport-diffusion equation. Recently, one-dimensional ADE with linear type reac-

tion term in groundwater problem was solved [94]. But to the best of the author’s

knowledge, the problem with nonlinear reaction term with prescribed initial and

boundary conditions has not yet been done by any researcher.

In 1928, the fundamental theoretical article on the solution of the problem

of mathematical physics using FDM had been published by R. Courant, K. O.

Friedrichs and H. Lewy. A discrete analogue of Dirichlet’s principle was used in the

article to define five-point approximation solution of Laplace equation. Considerable

progress in FDM was made later for time-dependent problems. There are many

researchers viz., J. Crank, P. Nicolson, J. Douglas, D. Lees, O. Widlund and others

who played major contributions during the 1950’s and 1960’s. The Poisson equation

is the equation of poisseuille flows in arbitrary cross-section which was calculated

numerically by T. Fukuchi using the forward time centered space (FTCS). During

computation, a rectangular as well as rotating square cross-section domain had been

considered. The computed results were confirmed with the analytical solution for

any grid dispositions. T. Fukuchi calculated the stability analysis of FTCS using

bisection method which was very important and difficult to calculate.

FDM is the oldest method for solving the PDEs, which use a topologically

square network of lines towards discretization of the PDEs. In the case of Carte-

sian coordinate systems, the method can be applied to numerical analysis over any

complex domain. Due to the complexity of complex domain when taken for geome-

try of immersed body in a fluid, an analytical domain of arbitrary configuration is

considered. For structured grids, the method is simple and effective, and for regular
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grids it is accessible to obtain higher order schemes. Since during discretization by

FDM, the lengths of the intervals for both time and space decrease, it will provide

more accurate result. Again the method is simple and easy to implement in a struc-

tured domain. The numerical scheme is easy to debug codes. For these reasons, this

numerical method has become an important and efficient tool for solving nonlinear

problems. The advantage of the concerned method over the other existing meth-

ods is that it provides the flexibility to reduce the linear/nonlinear problem into

the system of linear/nonlinear algebraic equations, which can be computed easily

for different discretized points. The strong historical background and the simplicity

and efficiency of the method showed that this method may continue to flourish and

be an active field of research on nonlinear fluid flow problems. Due to its potential

in solving many unsolved problems, FDM was treated as a novel method in the field

of computations. The limitations of the method in the requirement of long mem-

ory due to unavailability of resources in research laboratories had been well taken

care of by the researchers after the invention of Cray machine. After that there

was lot of improvement of the time domain computation which has made it a novel

one for application in practical problems. This has motivated the author to apply

the method to solve the nonlinear problem under prescribed initial and boundary

conditions. The implementation of FDM here ensures positivity of the solution and

thus numerical stability of the computation.

In the present endeavor, a sincere attempt has been taken to find the nu-

merical solution of the one-dimensional nonlinear RADE with initial-boundary con-

ditions using FDM. The considered problem is first converted into algebraic equa-

tions using finite difference approximation and then algebraic equations are solved

for different grid points. The obtained results are depicted graphically for conser-

vative as well as non-conservative systems for different particular cases. To validate
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the accuracy and efficiency of the considered method, the results obtained are com-

pared with the existing analytical solution for the conservative system [83]. After

successful validation, the author have applied the proposed method to solve the con-

sidered nonlinear problem for the non-conservative cases and the results obtained

are displayed graphically.

2.2 Stability analysis of the problem

Let us consider the one-dimensional advection-diffusion equation with nonlinear re-

action term as

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
− V ∂u(x, t)

∂x
− λu(x, t)(1− u(x, t)). (2.2)

To find the accuracy of the FDM for equation (2.2), let us apply an explicit scheme

in the equation to get the truncation error as

Ej
i =

u(xi, tj+1)− u(xi, tj)

k
−Du(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

h2

+ V
u(xi+1, tj)− u(xi, tj)

h
+ λu(1− u). (2.3)

The Taylor’s series expansions of each term for the above equation are given as

u(xi, tj+1)− u(xi, tj)

k
=
∂u

∂t
+O(k),

u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

h2
=
∂2u

∂x2
+O(h2)
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and

u(xi+1, tj)− u(xi, tj)

h
=
∂u

∂x
+O(h).

Substituting the above values in the equation (2.3), we have

Ej
i =

(∂u
∂t
−D∂

2u

∂x2
+ V

∂u

∂x
+ λu(1− u)

)
+O(k) + V.O(h) +D.O(h2). (2.4)

The principal part of the truncation error goes to zero as per equation (2.2). In

this method equation (2.4) shows the second order accuracy in space and first order

accuracy in time, that is O(h2, k) for reaction-diffusion equation (RDE) and first-

order accuracy in space and time, that is O(h, k) for reaction-advection-diffusion

equation.

Next, we consider Von-Neumann method to investigate the stability of the

proposed method. Using FDM, the RADE can be written as

uj+1
i = uji +

Dk

h2

(
uji+1 − 2uji + uj−1i

)
− V k

h

(
uji+1 − u

j
i

)
− kλuji (1− u

j
i ). (2.5)

Since the method is applicable to the linear scheme, the nonlinear term uji (1 − u
j
i )

is linearized [95, 96] by taking uji = τ (a constant value) so that equation (2.5) can

be rewritten as

uj+1
i = uji + ψ

(
uji+1 − 2uji + uji−1

)
− σ(uji+1 − u

j
i )− k λ u

j
i (1− τ), (2.6)

where mesh ratio parameter ψ =
Dk

h2
Courant number σ =

V k

h
and τ is the local

constant.
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Defining the error by U j
i as U j

i = ξj ei(iβh) , where i =
√
−1 substituting in

the above equation (2.6), we get the simplified form of the equation as

ξ = 1− kλ(1− τ)− 4ψ sin2
(βh

2

)
− 2σ sin2

(βh
2

)
+ iσ sin(βh), (2.7)

whose magnitude is defined as

|ξ|=
√(

1− kλ(1− τ)− 4ψ sin2
(βh

2

)
− 2σ sin2

(βh
2

))2
+ σ2 sin2(βh).

The Von-Neumann stability condition is given [96] as |ξ|≤ 1. Thus,

0 ≤
(

1− kλ(1− τ)− 4ψ sin2
(βh

2

)
− 2σ sin2

(βh
2

))2
+ σ2 sin2(βh) ≤ 1. (2.8)

If we choose local constant τ = 0,max
(

sin2
(βh

2

))
= 1 and min

(
sin2(βh)

)
= 0,

then we have

(1− kλ− 4ψ − 2σ)2 ≤ 1

i.e., − kλ

2
≤ (2ψ + σ) ≤ (2− k λ)

2
.

. If V = 0 i.e., for the case of reaction-diffusion equation, the range of mess ratio

parameter becomes

−kλ
4
≤ ψ ≤ 2− kλ

4
.

Considering the stability sizes of mess ratios of the above two cases it may be con-

cluded that the FDM provides conditionally stability for the considered problem.
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2.3 Solution of the problem

In this section, an endeavour has been taken to find the numerical solution of one-

dimensional ADE (2.2) with nonlinear reaction term under the initial condition

u(x, 0) = 0, 0 ≤ x ≤ L, (2.9)

and boundary conditions as

u(0, t) = u0, t > 0, (2.10)

∂u(L, t)

∂x
= 0, t > 0. (2.11)

In this problem, first let us replace the region over which the independent variables

in the differential equation are defined by a finite grid of the points and then re-

place the derivatives and its supplementary conditions given in the initial-boundary

conditions (2.9)-(2.11) by finite difference approximations. Forward finite difference

approximation for first order time and space derivatives and central difference ap-

proximation for second order space derivative have been used in equation (2.2). After

some mathematical calculations, we get the following system of algebraic equations

as

uj+1
i = αuji−1 + β uji + η uji+1 + µ (uji )

2, i = 1, 2, · · · ,M, j = 0, 1, 2, · · · , N − 1,

(2.12)
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where α =
Dk

h2
, β =

(
1− 2Dk

h2
+
V k

h
− λk

)
, η =

(Dk
h2
− V k

h

)
and µ = λk.

The initial and boundary conditions are discretised as

u0i = 0, i = 0, 1, 2, · · · ,M, (2.13)

uj0 = u0, u
j
M = ujM−1, j = 1, 2, 3, · · · , N. (2.14)

Nonlinear algebraic equations are solved by computation for different node points.

The graphs between normalized concentration and column length for different time

predict the physical significance of the nonlinear solute transport system.

2.4 Results and discussion

In the present section, a drive has been taken to find the numerical solution of

normalized solute concentration u(x, t)/u0 for different particular cases which are

depicted through Figures 2.1-2.7. During numerical computation the values of

the parameters are taken as D = 0.6 in2/h, V = 0.6 in/h and λ = 0.6 (for non-

conservative system). To validate the considered method, a comparison of the nu-

merical results with the existing analytical result [83] for t = 2.5hrs and t = 10hrs

is shown through Figure 2.1 for the conservative system (λ = 0). From the figure, it

is clear that the numerical results are quite similar to the existing analytical results

which exhibit that our proposed method is effective and reliable.

Figure 2.2 shows the movement of normalized solute concentration in the

finite length column in the conservative system for different t = 2.5, 5, 10, 15, 20 hrs.

It is found from the figure that the solute cover more length in the soil column as time
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increases. Also, the slopes of the graphs are becoming flattered with time due to the

prior existence of solute concentration in the column. Figure 2.3 shows the movement

of solute concentration in the finite length column with the effect of the sink term

that is for the non-conservative system at various time levels t = 2.5, 5, 10, 15, 20.

The nature of the graphs is similar to the previous one. Figure 2.3 depicts that the

movement of solute concentration is less compared to a conservative system due to

the effect of the sink term (λ > 0).

The effect of the reaction term on the solution profile in the absence of the

advection term V = 0 is displayed through Figures 2.4-2.5. Figure 2.4 shows that

in the absence of advection term for the conservative case the input concentration

initially moves with time and after a certain time period it will stabilize, that is, there

is no movement of concentration. It is also clear from Figure 2.5 that the movement

of solute is slow for the non-conservative system as compared to a conservative

system due to the presence of the sink term.

The effect of reaction term on the solution profile for longitudinal dispersion

and advection-diffusion process (D = 1.0 in2/h, V = 1.0 in/h) is expressed through

Figures 2.6-2.7. The nature of the graphs are similar to Figures 2.4-2.5 for both

conservative and non-conservative cases but here the movements of solute increase

in each case that is, it covers more length in the column for each time considered

previously, which is physically justified.
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Figure 2.1: Comparison between analytical and numerical results at
t = 2.5, 10 when λ = 0.

Figure 2.2: Plots of u(x, t)/u0 vs. x at t = 2.5, 5, 10, 15, 20, D = 0.6 and
V = 0.6 when λ = 0.
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Figure 2.3: Plots of u(x, t)/u0 vs. x at t = 2.5, 5, 10, 15, 20, D = 0.6 and
V = 0.6 when λ 6= 0.

Figure 2.4: Plots of u(x, t)/u0 vs. x at t = 2.5, 5, 10, D = 0.6 and V = 0
when λ = 0.



Chapter 2. Numerical solution of nonlinear reaction-advection-diffusion... 51

Figure 2.5: Plots of u(x, t)/u0 vs. x at t = 2.5, 5, 10, D = 0.6 and V = 0
when λ 6= 0.

Figure 2.6: Plots of u(x, t)/u0 vs. x at t = 2.5, 5, 10, 15, 20, D = 1 and
V = 1 when λ = 0.
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Figure 2.7: Plots of u(x, t)/u0 vs. x at t = 2.5, 5, 10, 15, 20, D = 1 and
V = 1 when λ 6= 0.

2.5 Conclusion

The goal of the present scientific contribution is the numerical solution of the

advection-diffusion equation with nonlinear reaction term using the finite difference

method. To validate the efficiency of the proposed method, a comparative study

between the approximate solution and the existing analytical result of the consid-

ered problem for the conservative case is carried out through error analysis which is

displayed graphically. The main contribution is finding the damping effect on the

solution profile due to the presence of the reaction term. The effect of reaction term

on the solution of the diffusion process in the absence or presence of advection term

is the key feature of the chapter. This effect of reaction term towards the damping of

the solute concentration, for different column lengths at various time levels in the ab-

sence or presence of advection term, was determined with little computational time

by applying the efficient and powerful FDM. Another striking feature of the chapter
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is the study of conditional stability when the proposed method is applied to find the

stability regions of the mess size parameters for conservative and non-conservative

cases.

***********


