
Chapter 1

Introduction

1.1 Introduction

Public interest in the environment and its effects on the society have been increased

in recent years. These are shown more in stringent developed country regarding

environmental pollution. Numerous directives are encompassing, noise, water and

air pollution, general waste management and protection of flora and fauna. These

directives have compelled environmental agencies to improve existing methods of

pollution management. The issues of water pollution and waste water management

are of particular significance as water is essential for life. It is widely used by society

for industrial and domestic purposes most obviously in manufacturing, sanitation,

cooking, drinking and bathing. Also, consideration must be given to marine and

river environments in terms of fish and shellfish habitats. Coastal waters are also

important, particularly in tourist areas, which are detrimentally affected if polluted.

To this end, strict regulations exist which affect how waste water treatment must

be undertaken and where effluent can be discharged.
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Solute transport through the groundwater has become an important topic

of research in the interdisciplinary branches of science and engineering, called hy-

drogeology. The word hydrogeology is the combination of three words hydro means

water, geo means earth and logy means study. This branch of science is the combina-

tion of two separate branches viz., hydrology where one study about water and the

geology where one study about the earth. In hydrology, basically water movement,

distribution and quality of water present on earth and other planets are studied.

This branch also subdivides into many branches like chemical hydrology, echo hy-

drology, surface hydrology, hydrogeology, hydro informatics, hydro meteorology and

isotope hydrology. In geology, the study is concerned about the earth structure, be-

neath, rocks of which it is composed and the processes by which those are changed

over time. From this, we get the knowledge about the age of the earth, the history

of earth and also the properties of materials of which earth is composed. In practical

terms, geology is important for minerals and hydrocarbon exploration and exploita-

tion, evaluating water resources, understanding the natural hazards, the remediation

of environmental problems and providing insights into past climate change. Both

the fields, hydrology and geology have their own historical background. In hydro-

geology, we mainly study the water and solute that moves beneath the earth. The

water that moves below the earth surface is called groundwater and the area where

it moves generally called aquifer.

1.2 Groundwater contamination

Water is one of the primary elements for living things on earth. It is presented in

two forms, surface water and groundwater, of which only 2.5% is fresh water. More
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than two-thirds of this freshwater is covered by the glacier and ice caps. Ninety-

seven percent of the freshwater comes from groundwater. So the groundwater is one

of the most important sources of freshwater towards the fulfillment of basic needs

like agriculture, industries and also as an essential source of drinking water in both

urban and rural areas.

As the primary source of drinking water is the groundwater; groundwater

contamination is a serious issue for living things. Contaminated groundwater is very

harmful to the environment, human health and widely affect the wildlife. It may

not damage humans and animal health immediately but can be dangerous after

long term exposure. Groundwater contamination through septic tank waste can

have serious effects on human health. There are many micro-organisms and a large

number of synthetic chemicals for contaminating groundwater. Drinking water due

to the presence of bacteria and viruses may cause hepatitis, cholera, etc. and also it

may cause methemoglobinemia or blue baby syndrome for containing a high amount

of nitrates. Different actions are being taken by different countries to remediate the

surface and groundwater. Compared to surface water, groundwater contamination is

more difficult to abate because it can move considerable distance in unseen aquifers.

It is expensive to get clean groundwater after contamination.

Contaminants after releasing from the environment move within an aquifer

similarly as groundwater moves. In an aquifer those substances transport along

with groundwater flow of from high concentration area to the low concentration

area. Groundwater becomes contaminated from natural sources or various types of

human activities. Its quality is affected due to residential, municipal, commercial,

industrial and agricultural activities. Groundwater and surface water are intercon-

nected. Since the activities on the land surface e.g., the release of stored industrial



Chapter 1. Introduction 4

wastes, contaminated recharge water, source septic system or due to leakage of un-

derground storage systems, etc., contaminants reach to the groundwater through

porous media. This form of environmental degradation occurs when pollutants are

directly or indirectly discharged into the water bodies. The natural contamination

depends on the material through which the groundwater moves. During movement,

it may pick up a wide range of compounds such as magnesium, calcium, and chlo-

rides. Naturally occurring minerals and metallic deposits in rock and soil also create

groundwater contamination. Due to the increase of population it is overexploited

and thus it is contaminated by various point and non-point sources like storage tank,

disposal sites, industry waste disposal sites, accidental spills, leaking gasolines, land-

fills, fertilizers, pesticides and herbicides [1, 2, 3, 4, 5, 6, 7].

Figure 1.1: Sources of groundwater contamination

Near the coast, a vacuum is created by over pumping an aquifer which

can quickly be filled up with salty seawater due to which water supply may become

undrinkable and useless for irrigation. Groundwater pumping has exceeded the rate

of replenishment. In our country, the contamination of groundwater is caused by
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human activities such as sewage disposal, refuse disposal, pesticides, and use of

fertilizers, industrial discharges, and toxic waste disposal. Improper management

of groundwater resources is also a major issue leading to increase in the problem of

drinking water and as a result, the water level is getting down fast in several parts of

India because of excessive extraction of groundwater as reported by National water

policy (1987). Since non-point source materials are used over a large area, hence it

has large impact on the water in an aquifer compared to point-source.

If groundwater is contaminated overall, then the rehabilitation is deemed

to be too difficult and expensive and thus it may become unusable for decades. In

that case, searching for the other source of water is the only option though it is quite

impossible. So it is important to develop a mathematical model that predicts the

solute movement in aquifers and its effect on human health and the environment. To

carry out this, good knowledge about the physical, chemical and biological processes

that control the transport of solute in groundwater is necessary at the outset. The

attention should be given to describe the problem domain, boundary conditions and

model parameters for creating the numerical groundwater models of field problems.

1.3 Reaction-advection-diffusion equation

The most of the structures through which groundwater moves are porous type,

thus there is plenty of scope of research in the field of solute transport in artificial

[8, 9, 10] or natural porous media. Mathematical modeling of solute transport

in groundwater is an important area of research, where many powerful techniques

are used to solve the existing problems on contamination. Many engineers and

scientists have predicted the movement of the solute in the groundwater system

through experiments and theoretical studies.
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The pollutant creates a contaminant plume within an aquifer which spreads

over a wide range due to dispersion (diffusion) and movement of water. The trans-

portation of the plume called a plume front can analyze through a transport model,

called the solute transport model. Solute transport modeling is useful to predict

the solute concentration in aquifers, lakes, rivers, and streams too. A large number

of mathematical models for solute transport in groundwater were presented by en-

gineers and scientists [1, 11, 12, 13, 14]. Hydrologists and researchers have mainly

used groundwater modeling for the analyses of the resource potential and predic-

tion of future impact on the environment under different conditions. Anderson et

al. [2] described the applied groundwater models, simulation of flow and advective

transport in their monograph. Charbeneau [3] explained the groundwater hydraulics

and pollutant transport in his book. Kehew [4] demonstrated the applied chemical

hydrology. In 2005, Rausch [15] described the modeling of solute transport and also

provided analytical solution. All these investigations concern about possible con-

tamination of the subsurface environment and have enhanced the research of solute

transport phenomena in porous media.

There are many natural systems those can be modeled such as pollution of

groundwater, atmospheric pollution caused by smoke or dust and thermal pollution

of river systems by using partial differential equation (PDE). The velocities of the

transport medium are computed by solving the equations describing flows in porous

media. The flow equations are nonlinear, but advection and diffusion are of primary

importance.

The transport of solute under the combined effect of advection and diffusion

is described by the advection-diffusion equation (ADE). If the chemical being

transported through soil is reactive, then another form of the chemical equation
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is found to occur with reaction term called reaction-advection-diffusion equa-

tion (RADE). RADEs have broad applications in different areas such as medical

science, mechanical engineering, environmental engineering, petroleum engineering,

chemical engineering, heat transfer, soil sciences, as well as in biology. In practi-

cal application advection-diffusion equation describe heat transfer in a draining film

[16], contaminant dispersion in shallow lakes [17], flow in porous media [18], the

transport of pollutants in the atmosphere [19], the spread of pollutants in rivers

and steams [20], oil reservoir flow [21]. Numerical time-domain-diffusion simulations

have been used by Voutilainen et al. [22] for studying the diffusion behaviour of

tracer molecules in rock matrix with homogeneous and heterogeneous porosities.

Sun et al. [23] proposed a numerical method whose computational efficiency and

simulation accuracy is better compared to a reliable method known as Operator

splitting during solving advection-dispersion-reaction equations. Baltean et al. [24]

developed a macroscopic model for the transport of a passive solute using diffusion

and convection in a heterogeneous medium. A general approximation for the so-

lution of the one-dimensional nonlinear diffusion equation had been presented by

Parlange et al. [25], which was applied to arbitrary soil properties and boundary

conditions. Muralidhar and Ramkrishna [26] analysed using generalized hydrody-

namics that describes fractal diffusion with a frequency and wave number dependent

diffusivity.

The reaction-advection-diffusion equation is one of the most challenging

equation, which has been used to predict the movement of a pollutant in water

body. The general solute transport model is reaction-advection-diffusion equation

given by

∂u

∂t
= ∇.(D.∇u)− V.∇u+ λf(u), (1.1)
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where u is the transport dependent variable, D is the diffusivity tensor, V is the

advective velocity vector. λ is rate coefficient and f(u) is reaction term.

For the constant parameters of transport with respect to position and time,

RADE provides explicit closed form solution by using suitable numerical methods.

Solution of the equation yields the concentration of solute (pollutant) as a function

of time and distance from contamination source. The equations are ultimately solved

using the data of the groundwater velocity, coefficients of dispersion, rate of chemical

reactions, initial concentration of solutes in the aquifer and boundary conditions

along with the physical boundaries of the groundwater flow system.

1.3.1 Derivation of reaction-advection-diffusion equation

According to Fick’s first law, the dispersion coefficient is the proportionality constant

between the molar flux and the concentration gradient, and is given by

J = −D∂u(x, t)

∂x
, (1.2)

where J is the mass flux of solute per unit area per unit time, u(x, t) is the solute

concentration, x is the spatial coordinate measured normal to the section and D is

the dispersion coefficient. Here negative sign indicates that the dispersion occurrence

in the opposite direction of increasing concentration. This dispersion coefficient is

sometime taken as constant, for example, in dilute solutions, while in other cases it

depends on concentration, for example, in high polymers.
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Figure 1.2: Control volume for solute transport through porous media

The fundamental differential equation of dispersion in an isotropic medium

is derived from equation (1.2) as follows (the geometry given in Figure 1.2).

Solutes out from the control volume in x-direction, y-direction, and z-

direction due to dispersion are

(
Jx +

∂Jx
∂x

dx

)
dy dz,

(
Jy +

∂Jy
∂y

dy

)
dz dx,

(
Jz +

∂Jz
∂z

dz

)
dx dy respectively

Therefore, net flux in x-direction is Jxdy dz −

(
Jx +

∂Jx
∂x

dx

)
dy dz =

−∂Jx
∂x

dx dy dz.

Similarly, net flux in y-direction and z-direction are −∂Jy
∂y

dx dy dz and

−∂Jz
∂z

dx dy dz respectively.
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Total net flux of the representative elementary volume due to dispersion is

−

(
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

)
dx dy dz. (1.3)

The rate of change of mass is the representative elementary volume is

∂u

∂t
dx dy dz. (1.4)

As per the law of conservation of mass,

∂u

∂t
dx dy dz = −

(
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

)
dx dy dz. (1.5)

Now, substituting the values of Jx , Jy and Jz in equation (1.2), we get

∂u

∂t
=

∂

∂x

(
Dx

∂u

∂x

)
+

∂

∂y

(
Dy

∂u

∂y

)
+

∂

∂z

(
Dz

∂u

∂z

)
, (1.6)

which is the classical dispersion equation.

Total mass of solute transported per unit cross sectional area due to ad-

vection and dispersion in x-direction is

Jx = (vx.u.dy dz −Dx
∂u

∂x
dy dz)/dy dz = vxu−Dx

∂u

∂x
. (1.7)

Similarly, total mass of solute transported per unit cross sectional area due to ad-

vection and dispersion in y-direction and z-direction are

Jy = (vy.u.dz dx−Dy
∂u

∂y
dz dx)/dz dx = vyu−Dy

∂u

∂y
, (1.8)



Chapter 1. Introduction 11

Jz = (vz.u.dx dy −Dz
∂u

∂z
dx dy)/dx dy = vzu−Dz

∂u

∂z
. (1.9)

Total net flux of the representative elementary volume due to advection is

−

(
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

)
dx dy dz. (1.10)

The rate of change of mass is

∂u

∂t
dx dy dz. (1.11)

As per the law of conservation of mass,

∂u

∂t
dx dy dz = −

(
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

)
dx dy dz. (1.12)

Now, substituting the value of Jx , Jy and Jz in equation (1.2), we get

∂u

∂t
=

∂

∂x

(
Dx

∂u

∂x

)
+

∂

∂y

(
Dy

∂u

∂y

)
+

∂

∂z

(
Dz

∂u

∂z

)
− ∂

∂x
(vxu)− ∂

∂y
(vyu)− ∂

∂z
(vzu).

(1.13)

This is the classical advection-dispersion equation for conservative solute in porous

media. The conservative solute means that the solute does not interact with the

porous medium or it does not undergo biological or radioactive decay. For a non-

conservative, one more term be added in the last equation known as reaction term

R and the above equation becomes

∂u

∂t
=

∂

∂x

(
Dx

∂u

∂x

)
+

∂

∂y

(
Dy

∂u

∂y

)
+

∂

∂z

(
Dz

∂u

∂z

)
− ∂

∂x
(vxu)− ∂

∂y
(vyu)

− ∂

∂z
(vzu) +R. (1.14)
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It can be expressed as follows

∂u

∂t
= ∇.(D.∇u)− V.∇u+R,

which is known as reaction-advection-diffusion equation.

The important tool for taking into account the memory effect in the porous

media is the use of fractional-order derivatives. In contrast to integer-order differ-

ential operator, which is the local operator, a fractional-order differential operator

is nonlocal in the sense that it takes into account the fact that the future state

not only depends upon the present state but also upon all of the histories of its

previous states. For this realistic property, the usage of fractional-order system is

becoming popular to model the behavior of real system in various fields of science

and engineering.

1.4 Fractional calculus

The fractional calculus is a generalization of the integer order differentiation and

integration to arbitrary order. It plays an important role in describing many physi-

cal and chemical phenomena in various branches of science and engineering, which

can be modeled into fractional-order differential equations. One of the most impor-

tant fractional-order differential equations is the fractional-order RADE. Renowned

Mathematicians like J. Liouville, B. Riemann, G. W. Leibniz, H. Weyl, N. H. Abel,

A. K. Grünwald, A.V. Letnikov and J. Caputo have contributed much towards the

development of fractional calculus. Fractional calculus provides an excellent tech-

nique for a description of memory and hereditary property of various materials and
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processes [27]. It is found that fractional derivatives are very effective for the physi-

cal problems such as diffusion process, rheology and fluid mechanics, etc. During the

last few decades, fractional calculus has received great importance due to its various

applications in applied science and engineering which are modeled mathematically

by fractional-order partial differential equation (FPDE) [28]. Till date though in the

mathematical model there is no acceptable geometrical or physical interpretation,

but researchers from different parts of the world are actively engaged to explore

it. In the fractional differential equation, fractional space derivatives are used to

model anomalous diffusion or dispersion, and it is seen from the literature survey

that in some diffusion processes Fick’s second law fails to describe the related trans-

port behaviour. The phenomenon which is characterized by the nonlinear growth of

the mean square displacement of a diffusion particle over time is called anomalous

diffusion.

1.4.1 A brief history

Many authors have cited a particular date as the birthday of so-called “Fractional

Calculus.” In a letter dated September 30, 1695 L’Hopital wrote to G.W Leibniz

and asked him about a specific notation he had used in his publication for the nth-

derivative of the linear function f(x) = xn i.e.,
dnxn

dxn
. L’Hospital posed the question

to Leibniz, what would the result be if n = 1/2. Leibniz’s response: “An apparent

paradox, from which one-day useful consequences will be drawn.” In these words,

fractional calculus was born. From this letter, we can say that the integer-order and

the fractional-order derivatives were born almost at the same time.

After the letter of 1695, there were many other letters written regarding
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this subject. In 1697, G.W. Leibniz sent letter to J. Wallis and J. Bernoulli and men-

tioned the possibility of fractional-order differentiation, that for non-integer value of

n is

dneax

dxn
= aneax.

After Leibniz died, several other authors devoted their time to this subject.

In this sequence, Leonard Euler contributed to the generalization of fractional differ-

ential calculus. Daniel Bernoulli generalized the notion of factorial n! to non-integer

values, which is called Gamma function Γ(·).

Between 1810 and 1819, Sylvestre Francois Lacroix, the French mathe-

matician used Euler’s derivation for his textbook ’Traite du Calcul Diferentiel et

du Calcul Integer’ [29]. Lacroix generalized the derivative from integer-order to

arbitrary order α of xβ as

dαxβ

dxα
=

Γ(β + 1)

Γ(β − α + 1)
xβ−α. (1.15)

In 1822, Joseph Fourier generalized the notion of differentiation for arbi-

trary function through his book [30]. Until 1822, there were no attempts to describe

physical phenomena of generalized arbitrary derivatives like integer-order derivatives

only interest was on to set the basis of fractional differential calculus.

Niels Henrik Abel in 1823, applied the fractional differential calculus in

the solution of the tautochrone problem [31]. Later in 1832, Liouville presented two

different definitions for fractional derivatives [32]. The first definition is based on a
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series that means he expanded the function f(x) in the ‘form of series as

f(x) =
∞∑
n=0

Cne
an x, (1.16)

whose arbitrary α order derivative is

Dαf(x) =
∞∑
n=0

Cn a
α
n e

an x, (1.17)

which is restricts the series that depends on the order of differentiation to be con-

vergent. According to the second definition of fractional derivative, it was applied

to the function of the form x−α with a > 0. He considered I =
∫∞
0
ua−1e−xu du.

after transformation xu = t, it gives

x−a =
1

Γ(a)
.I.

Applying the derivative operator Dα on both sides of the equation and using equa-

tion (1.15), we get

Dαx−a =
(−1)αΓ(a+ α)

Γa
x−a−α. (1.18)

The disadvantage of second definition is that it is not suitable to a wide class of

function.

The main difference between Lacroix and Liouville definitions on fractional

derivative is that according to Lacroix definition fractional derivative of constant

gives a non zero value, while other one gives zero. This leads to a great discussion

in the 19th century, regarding whose definition was the correct one.

Following the timeline, B. Riemann was the next well known mathematician
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to present a definition for the fractional derivative. The idea of Liouvill’s influenced,

Riemann with his memoirs in which Liouville wrote the ordinary differential equation

dny(x)

dxn
= 0 has the complementary solution

yc = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1.

Thus Riemann tried to find the solution y(x) of
dny(x)

dxn
= f(x), where f(x) ∈ C[d, e]

by setting y(k)(a) = 0, a ∈ (d, e) with 0 ≤ k ≤ n−1. The solution obtained is unique

and given by

y(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt.

By extending this to non-integer order α we have Riemann-Liouville definition of

fractional order integral as

y(x) = Jαx f(x) =
1

Γα

∫ x

a

(x− t)α−1f(t)dt;α ≥ 0,

and the fractional order derivative be

aDα
xf(x) =

dn

dxn
aJ (n−α)

x f(x).

Consequently, In 1892, Hadamard [33] had given definition for both fractional or-

der integral and derivative. In 1917, Weyl [34] had formulated similar definition

to the Riemann-Liouvill definition, but with different Kernel function (t − x)α−1

and different terminals of integration. Grunwald [35] and Post [36] had formulated

fractional derivative as the limit of a sum, with the help of classical definition of a

derivative. In 1927, Marchaud [37] proposed an equivalent fractional derivative of

arbitrary order.
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An important role was played by Mittage-Leffler function for the generaliza-

tion of ex in fractional calculus which was given in 1903. Erdelyi-Kober fractional

integral was presented by Erdeyi [38] and Kober [39], which was generalized the

Riemann fractional integral and the Weyl integral. Riesz also formulated fractional

integral which was successfully used in potential theory. In 1967, M. Caputo intro-

duced a definition known as the Caputo fractional derivative, which is obtained by

computing an ordinary derivative followed by the fractional integral.

There are many other definitions exist in the literature [40]. In 1927, Davis

[41] shows the benifits from using fractional calculus for functional equations. In

1938, [42] used the Riemann-Liouville and Weyl integral to develop the fractional

version of the integration by parts. In 1967, Love [43] devised explit solutions for two

integral equations, and also showed necessary and sufficient conditions for existence

and sufficient condition for uniqueness of solution. Later in 1971, he extended the

properties of the fractional calculus of real order to complex order [44].

For the first conference the credit is due to B. Ross, who shortly after his

PhD dissertation on fractional calculus, organized the first conference on Fractional

calculus at the University of New Haven in June 1974, and edited its proceedings.

One of the important papers was by Campos [45], where a generalization of both

the Weyl and Cauchy integrals had been devised. In 1987, the monograph of S.

Sanko, A. Kilbas and O. Marichev were referred as ”encyclopedia” of fractional

calculus, appeared first in Russian later in English edition in 1993. Nowadays, the

series of books, journals and texts devoted to fractional calculus and its applications

and this list is expected to grow up yet more, in the forthcoming years. But what

is the importance of fractional calculus in physical phenomena until recent days,

this was regarded as a secret mathematical theory without application of fractional

calculus, but in the last few decades there have been lot of research activities on
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the applications of fractional calculus to very vicarious scientific fields ranging from

the physics of diffusion and advection phenomena to control system to finance and

economics. Indeed, at present applications related to fractional calculus one found in

the areas viz., fractional control of engineering systems, advancement of calculus of

variations, optimal control to fractional dynamic system, fundamental explorations

of the mechanical, electrical, and thermal constitutive relations and also in various

engineering materials such as viscoelastic polymers, foams, gels, and animal tissues,

and their engineering and scientific applications, fundamental understanding of wave

and diffusion phenomena, application to plasma physics, bio-engineering systems

such as brakes and machine tools, image and signal processing etc.

1.5 Fractional-order reaction-advection- diffusion

equation

The fractional-order form of the RADE has not yet been studied much. In this the-

sis, author has mainly investigated numerical solutions of fractional-order reaction-

advection-dispersion equation (FRADE) and analyses the solution profile of the

considered problems. The growing interest in FRADE is because of their useful

applications in the areas like electro magnetics, robotics and controls, acoustics,

viscoelastic damping and electro chemistry and in material science, which have mo-

tivated the researchers to take up this exercise. The FRADE is promising for an ac-

curate description of the transportation of solute in complex media such as a porous

aquifer. In the real world, FRADE has comprehensive applications in engineering,

physics, economics, etc. due to the non-local property of fractional order derivative.

Because of this property, FRADE has much more memory effect compared to integer

order RADE. FRADEs in time, space, time-space have been extensively applied in
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describing physical and engineering problems such as anomalous diffusion, medicine,

biology, solute transport, random and disordered media, control, signal processing

and so on. To describe and understand the dispersion phenomena, time, space,

time-space FRADEs have fundamental importance and have received considerable

attention in recent years. The researchers and engineers are actively engaged to

find the solution of RADE in fractional-order system due to its greater flexibility

in models, non-local behavior and ultimate convergence to the integer-order sys-

tem. Through the literature survey, few methods are found for solving FRADE like

variable transformation method, Green function method, the implicit and explicit

difference methods and the Adomian decomposition method.

In recent years, there are intensive study on fractional calculus for its major

applications in various fields viz., chemical, physical, biological, geological and finan-

cial systems. For example, the mathematical model on fractional diffusion describes

nondiffusive transport in plasma turbulence [46] and a nonlinear fractional diffusion

model for capillary flow through porous media [47]. Fractional calculus gives more

accurate models of systems under consideration. Using fractional derivative as a

mathematical tool to get the development of more robust mathematical model in

particular areas of reservoir engineering, is gaining attention in both industry and

academic. A realistic model of a physical phenomenon which is not only dependence

on time instant, but also the previous time history can be achieved by using frac-

tional order derivative in the place of integer order. In particular, the microscopic

behaviours of mass transportation in porous media are complex and the physical

phenomena show strange kinetics which cannot be modeled by classical diffusion

equation whereas fractional diffusion equation explains their microscopic dynamics.

Due to the complex structure of fractured porous media, it is considered

as a fractal. Thus particles those will be migrated along fractures at pore channels
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will behave as complex motion and as a result, the force field becomes stochastically

distributed fracture. Thus the diffusion equation in the porous media will behave

similar to the equation of anomalous diffusion. The fractional diffusion equation was

first derived for the media of fractal geometry by Nigmatullin [48, 49, 50] to find

better mathematical models for real-world problems. The study on the anomalous

diffusion of a contaminants from Fracture into Porous Rock Matrix can be found in

[51].

The fractional order transport equations within Liouville equations have

been considered [52, 53]. Uchaikin and Sibatov [54] have solved the fractional-

order transport equation in disordered semiconductors. Later, Kadem and Baleanu

[55] have investigated the solution of the fractional order transport equation. The

fractional order transport equations are also reported in [56] based on Levy stable

processes. The anomalous transport in fractional order system has been considered

in the research articles [57, 58, 59]. The microscopic behaviours of mass trans-

portation in porous media are complex and the physical phenomena show strange

kinetics which cannot be modeled by classical diffusion equation whereas fractional

diffusion equation explains their microscopic dynamics. The fractional order form

of the law of conservation of mass is described in the research article of Wheatcraft

and Meerschaert [60] where the need of the fractional conservation of mass equation

is described to model the fluid flow. The fractional order form of groundwater flow

problem can be seen in [61, 62] in which they have generalized the classical Darcy

law by taking the water flow as a function of a non-integer derivative of the Piezo-

metric head. Benson et al. [63, 64] have explained that the fractional order form of

advection-diffusion equation is useful for contaminant flow in heterogeneous porous

media and earth surfaces such as natural rivers.

Elementary particles perform complex motion due to the effect of various
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force fields of various motions and as a result trajectories of the particles reproduce

geometrical objects of complex structure. In this case, it will never follow the Gaus-

sian distribution and the traditional Fick’s law cannot be used towards modeling

of the diffusion equation. For deviation from the traditional Darcy’s law, various

strategies have been adopted, among those the most realistic approach is the contin-

uous time random walk (CTRW) approach, where the mean squared displacement

of the particles is described by the nonlinear power law 〈x2(t)〉 ≈ tα, 0 < α ≤ 1.

The conventional relation for the standard order diffusion process can be recovered

through α = 1.

1.6 Mathematical preliminaries

In this section, some notations and definitions are given which are used in the thesis.

1.6.1 Riemann–Liouville operator

Definition: The Riemann–Liouville fractional integral operator of order α > 0 of a

function f(x) ∈ [a, b] is defined by [65, 66]

Jαx f(x) =
1

Γα

∫ x

0

(x− ξ)α−1f(ξ)dξ, α > 0, x > 0,

J0
xf(x) = f(x).

The Riemann-Liouville fractional derivative operator is denoted by Dα
xf(x) and

defined by

Dα
xf(x) =

1

Γ(1− α)

d

dt

∫ x

a

f(ξ)

(x− ξ)α
dx, α ∈ (0, 1). (1.19)
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In general,

Dα
xf(x) =

1

Γ(n− α)

dn

dxn

∫ x

0

f(ξ)

(x− ξ)α−n+1
dξ.

Properties of Riemann–Liouville operator

1. Jαx J
β
x f(x) = Jβx J

α
x f(x).

2. Jαx J
β
x f(x) = Jα+βx f(x).

3. J0
xf(x) = f(x).

4. Jαx x
p =

Γ(p+ 1)

Γ(α + p+ 1)
xα+p .

1.6.2 Caputo fractional derivative

Definition: The definition of the Caputo fractional derivative which is frequently

appeared in the porous media literature is defined by [65]

Dαf(x) =


1

Γ(n− α)

∫ x
0

f (n)(t)
(x−t)α+1−ndt, if n− 1 < α < n,

dnf(x)

dxn
, if α = n ∈ N.

(1.20)

And DαC = 0, for a constant C.

Therefore, it follows that

Dαxβ =


0, if β ∈ N0 and β < dαe

Γ(β + 1)

Γ(β + 1− α)
xβ−α, if β ∈ N0andβ ≥ dαe or β /∈ Nandβ > bαc,

(1.21)

where dαe is ceiling function and bαc is floor functions are define later.
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Properties of Caputo fractional derivative

1. Let f ∈ Cn
−1, n ∈ N ∪ 0 then Dαf(x), 0 ≤ α ≤ n is well defined and Dαf(x) ∈

C−1.

2. If n− 1 ≤ α, n ∈ N and f(t) ∈ Cn
m,m ≥ −1, then

(JαxD
α)f(x) = f(x)−

∑n−1
k=0 f

k(0+)
xk

k!
, x ≥ 0.

1.6.3 Laplace transformation

Definition: Let f(t) is a piecewise continuous function on every finite interval on

semi-axis (t ≥ 0) and there exist some constants M and p such that |f(x)|< M ep t,

for all t ≥ 0, then Laplace transformation F (s) = L[f(t)] exists for all s > c and

defined by [67]

L[f(t)] =

∫ ∞
0

f(t) e−stdt.

1.6.4 Inverse Laplace transformation

Definition: An integral formula for the Inverse Laplace transform, called the

Mellin’s inverse formula, is defined through the Bromwich integral is given by the

line integral:

f(t) = L−1[F (s)] =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
F (s) estds,

where the integration is done along the vertical line Re(s) = γ in the complex plane

such that γ is greater than the real part of all singularities of F (s) and F (s) is

bounded on the line.
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1.6.5 Floor and Ceiling functions

The Floor of a real number α, denoted by bαc, is the largest integer that is less than

or equal to α. It is expressed express in the following way

bαc = max{n : n ∈ Z, n ≤ α}.

The Ceiling of a real number α, denoted by dαe, is the smallest integer that is greater

than or equal to α. It is expressed as

dαe = min{n : n ∈ Z, n ≥ α}.

1.6.6 Kronecker product

Definition: Let two matrices P of order m × n and Q of order p × q then the

Kronecker product of P and Q is denoted by P ⊗ Q, which is the mp × nq matrix

having the following block structure [68]

P ⊗Q =



p11Q p12Q · · · p1nQ

p21Q p22Q · · · p2nQ

...
...

...
...

pm1Q am2Q · · · pmnQ


. (1.22)

where

P =



p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
...

...

pm1 am2 · · · pmn


, Q =



q11 q12 · · · q1n

q21 q22 · · · q2n
...

...
...

...

qm1 qm2 · · · qmn


.
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1.6.7 Error function and complementary error function

Error function denoted by erf(t) and defined as

erf(t) =
2√
π

∫ t

0

e−x
2

dx,

with erf(−∞) = −1 and erf(∞) = 1.

The complementary error function erfc(t) is defined as

erfc(t) = 1− erf(t) =
2√
π

∫ ∞
t

e−x
2

dx.

1.7 Numerical methods

1.7.1 Finite difference method

The finite difference method (FDM) is one of the oldest numerical methods which

is applied to find the solution of differential equations. In 1768, Hirsch [69] sites

Euler as being the first to use FDM. The FDM is a simple approach, based on

the properties of Taylor series expansions and of, the subsequent application of the

definition of its derivatives [69, 70]. There are several options for the solution of

such a scheme, some of which are described in details in the articles [69, 70, 71, 72].

In general with the governing equations for unsteady fluid flow, our math-

ematical model equations contain partial derivative with respect to both time and

space. The finite difference method replaced PDEs with finite difference equations,

in terms of spatial and temporal grid co-ordinates. By this replacement, the method

converts the PDEs written as a continuum function to an arithmetic representation,
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which allows the equation to be solved more easily [73]. The finite difference equa-

tions link the values of dependent variables at a set of points such that, a grid of

points is used to represent the continuous physical domain. The resulting numerical

scheme is therefore based upon values defined at predetermined grid points.

This method requires use of a regular grid and to facilitate explanation

of the approach, and it will be considered that it is uniform, although this is not

essential. The grid must be constructed such that the nodal points are located at

the intersection of either curved lines or rectilinear. These lines appear as a set of

numerical coordinates, which is illustrated in one-dimension.

1.7.1.1 Construction of the method

Difference approximations may be constructed in various ways, among which Tay-

lor’s formula is probably the simplest one to serve our present purposes. First, the

region is discretized into finite grids as shown in Figure 1.3. Now consider the space-

time region such that space x ∈ [0, L] is discretized by dividing the length of the

intervals into M equal subintervals of length h and then the time t is discretized with

time spacing k > 0 such that tj+1 = tj + k with t0 = 0 . The partial derivatives in

the PDEs at each grid point are approximated from the neighbouring values by us-

ing Taylor’s theorem [74]. Next the values of dependent variables at each and every

internal grid point are calculated using the given initial and boundary conditions.

FDM requires more grid points to achieve reasonable accuracy.

1.7.1.2 Finite Difference approximation of derivatives

In the finite difference approximation the notations used are h is the spatial step,

k is the time step, xi = a + ih, i = 0, 1, 2, · · · ,M points are the coordinates of the
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mesh and M = (b−a)
h
, tj = jk, j = 0, 1, 2, · · · , N,N = T

k
. The values of the solution

u(x, t) at these grid points are given by u(xi, tj) ' uji , where uji are the numerical

estimates of the exact value of u(x, t) at the point (xi, tj).

Figure 1.3: A partition of the (x, t)− plane into uniform cells of size h×k.

The forward space and time difference schemes are

∂u

∂x
(xi, tj) '

uji+1 − u
j
i

h
, (1.23)

∂u

∂t
(xi, tj) '

uj+1
i − uji
k

, (1.24)

and the backward difference schemes for space and time are given by

∂u

∂x
(xi, tj) '

uji − u
j
i−1

h
, (1.25)
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∂u

∂t
(xi, tj) '

uji − u
j−1
i

k
. (1.26)

Forward and backward difference approximations are first order accuracy in x and

t. Another finite difference approximation of second order accuracy which is central

difference scheme given by the relations:

∂u

∂x
(xi, tj) '

uji+1 − u
j
i−1

2h
, (1.27)

∂2u

∂x2
(xi, tj) '

uji+1 − 2uji + uji−1
h2

. (1.28)

One can also approximate higher order derivative using finite difference approxima-

tion [75].

1.7.2 Bellman method

If f(t) is sufficiently smooth function to permit the approximate method, then sub-

stituting e−t = x in

F (s) = L[f(t)] =

∫ ∞
0

f(t) e−stdt,

we obtain

F (s) =

∫ 1

0

xs−1C(x) dx, (1.29)
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where C(x) = f(−ln(x)).

Applying the Gaussian quadrature formula to equation (1.29), we get

F (s) =
N∑
i=1

wi x
s−1
i C(xi), (1.30)

where x
′
i s (i = 1, 2, 3, · · · , N) are the roots of the shifted Legendre polynomial

PN(x) = 0 and w
′
i s (i = 1, 2, 3, · · · , N) are corresponding weights of the equation

F (s) = w1x
p−1
1 C(x1) + w2x

p−1
2 C(x2) + w3x

p−1
3 C(x3) + · · ·+ wNx

p−1
N C(xN).

Substituting p = 1, 2, · · · , N in above equation, we obtain

w1C(x1) + w2C(x2) + w3C(x3) + · · ·+ wNC(xN) = F (1),

w1x1C(x1) + w2x2C(x2) + w3x3C(x3) + · · ·+ wNxNC(xN) = F (2),

· · · · · · · · · · · · ·

w1x
N−1
1 C(x1) + w2x

N−1
2 C(x2) + w3x

N−1
3 C(x3) + · · ·+ wNx

N−1
N C(xN) = F (N),

(1.31)

which can be written in the matrix form as follows:



w1 w2 · · · wN−1 wN

w1x1 w2x2 · · · wN−1xN−1 wNxN
...

...
...

...
...

w1x
N−1
1 w2x

N−1
2 · · · wN−1x

N−1
N−1 wNx

N−1
N





C(x1)

C(x2)

...

C(xN)


=



F (1)

F (2)

...

F (N)


. (1.32)

The discrete values of C(xi) are calculated from equation (1.32) and finally the

function f(t) can be calculated by using interpolation.
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1.7.3 Shifted Legendre collocation method

1.7.3.1 Shifted Legendre polynomial

The Legendre Polynomials pn(x), n = 0, 1, 2, 3, · · · are the eigenfunctions of the

Strum-Liouville problem

d

dx
[(1− x2)y′ ]− 2x

dy

dx
+ n(n+ 1)y = 0, x ∈ [−1, 1], (1.33)

with Pn(1) = 1.

The Legendre polynomials satisfy the recursion relations

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x); n = 1, 2, 3, · · · , (1.34)

where P0(x) = 1 and P1(x) = x.

Here Pn(x) is defined by the interval [−1, 1]. Let us defined the so-called

shifted Legendre polynomial P l
n(z) on the interval [0, l, ] by introducing the change

of a variable with x =
2z − l
l

, which gives rise to

P l
n+1(z) =

2n+ 1

n+ 1

(2z − l)
l

P l
n(z)− n

n+ 1
P l
n−1(z); n = 1, 2, 3, · · · , (1.35)

where P l
0(z) = 1 and P l

1(z) =
(2z − l)

l
.

1.7.3.2 Properties of shifted Legendre polynomials

The analytical form of the shifted Legendre polynomials P l
n(x) is given by

P l
n(x) =

n∑
k=0

(−1)n+k
(n+ k)!xk

(n− k)! (k! )2(l)k
. (1.36)
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The orthogonality condition of the shifted Legendre polynomial [76] is

∫ l

0

P l
m(x)P l

n(x)dx =


l

2n+ 1
, if m = n,

0, if m 6= n.

(1.37)

1.7.3.3 Shifted Legendre function approximation

Any piecewise continuous function u(x) for x ∈ [0, l] can be expressed in terms of

shifted Legendre polynomials by using the orthogonality condition of shifted Legen-

dre polynomials as

u(x) =
∞∑
n=0

cnP
l
n(x), (1.38)

where cn =
(2n+ 1)

l

∫ l
0
u(x)P l

n(x)dx.

In practice, only the first (m+ 1)− terms of shifted Legendre polynomials

are considered. So we have

u(x) ≈ um(x) =
m∑
n=0

cnP
l
n(x) = CTφm,l(x), (1.39)

where CT = [c0, c1, c2, · · · , cm]T is the shifted Legendre coefficient vector and φm,l(x) =

[P l
0(x), P l

1(x), P l
2(x), · · · , P l

m(x)]T is the shifted Legendre vector.

Similarly, a function u(x, t) defined in 0 ≤ x ≤ l and 0 ≤ t ≤ τ can

expressed in terms of shifted Legendre polynomials as

u(x, t) ≈ un,m(x, t) =
n∑
i=0

m∑
j=0

ai,jP
τ
i (t)P l

j(x) = (φn,τ (t))
T .A.φm,l(x), (1.40)
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where A is the unknown matrix of order (n+ 1)× (m+ 1) and aij can be obtained

by the relation.

ai,j =
(2i+ 1)

τ

(2j + 1)

l

∫ l

0

∫ τ

0

u(x, t)P τ
i (t)P l

j(x)dxdt,

Let u(x, y, t) ∈ C([0, l]× [0, l]× [0, τ ]) is approximated by shifted Legendre

polynomials Pijk(x, y, t) as

u(x, y, t) ≈ um,m,n(x, y, t) =
m∑
i=0

m∑
j=0

n∑
k=0

uijkPijk(x, y, t)

= (φn,τ (t))
T .U.(φm,l(x)⊗ φm,l(y)), (1.41)

where U is the unknown matrix of order (n+1)×(m+1)2, Pijk(x, y, t) = P l
i (x)P l

j(y)P τ
k (t)

and uijk can be obtained by the relation.

uijk =
(2i+ 1)

l

(2j + 1)

l

(2k + 1)

τ

∫ l

0

∫ l

0

∫ τ

0

u(x, y, t)P l
i (x)P l

j(y)P τ
k (t)dxdydt. (1.42)

The Kronecker product of φm,l(x) and φm,l(y) is the function vector (φm,l(x) ⊗

φm,l(y)) of order (m+ 1)2 × 1 defined as

(φm,l(x)⊗ φm,l(y)) = (φ11(x, y), · · · , φ1(m+1)(x, y), φ21(x, y), · · · ,

φ2(m+1)(x, y), · · · , φ(m+1)(m+1)(x, y))T ,

(1.43)

where φ(i+1)(j+1)(x, y) = Pi(x), Pj(y) and i, j = 0, 1, 2, · · · ,m.
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1.7.3.4 Generalized shifted Legendre operational matrix

The derivative of the vector can be expressed by Canuto et al. [77] as

dφm,l(x)

dx
= D(1)φm,l(x), (1.44)

dkφm,l(x)

dxk
= (D(1))kφm,l(x), k = 1, 2, 3, · · · , n, (1.45)

where D(1) is the (m+ 1)× (m+ 1) operational matrix defined by

D(1) = (di,j) =


4m− 2, for m = n− i,


i = 1, 3, · · · , k,when k is odd number,

i = 1, 3, · · · , (k − 1), k is even number,

0, otherwise .

(1.46)

Saadatmandi and Dehghan [28] have generalized the operational matrix of derivative

of shifted Legendre polynomials to the fractional-order derivative in the Caputo

sense, which is denoted by D(α) and defined by Dαφm,l(x) = D(α)φm,l(x), where

D(α) =



0 0 · · · 0

...
...

. . .
...

0 0 · · · 0∑dαe
k=dαe κdαe,0,k

∑dαe
k=dαe κdαe,1,k · · ·

∑dαe
k=dαe κdαe,m,k∑i

k=dαe κi,0,k
∑i

k=dαe κi,1,k
. . .

∑i
k=dαe κi,m,k

...
... · · ·

...∑m
k=dαe κm,0,k

∑m
k=dαe κm,1,k

. . .
∑m

k=dαe κm,m,k



, (1.47)
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with

κi,j,k =
2j + 1

hk+1

j∑
i=0

(−1)i+j+k+l(i+ k)! (l + j)!

(i− k)! k! Γ(k − α + 1)(j − l)! (l! )2(k + l − α + 1)
.

It is to be noted that in D(α) , the first bαc rows are all zeros.

For instance, if α = 0.8,m = 7, we have

D(0.8) =



0 0 0 0 0 0 0 0

1.81521 0.495057 −0.206274 0.123764 −0.0856829 0.0641854 −0.0505703 0.0412722

−0.495057 4.08422 1.06084 −0.466496 0.292585 −0.209447 0.160962 −0.129386

1.60893 −0.565779 5.9026 1.64087 −0.752105 0.485751 −0.355496 0.27798

−0.618821 3.61772 −0.456273 7.51576 2.22412 −1.05229 0.694344 −0.516407

1.52325 −0.858364 5.23618 −0.290666 9.00084 2.80684 −1.36175 0.9136

−0.683006 3.40827 −0.877839 6.67292 −0.0969687 10.3949 3.38749 −1.67747

1.47268 −1.01933 4.93125 −0.824048 7.99458 0.1137 11.7196 3.96537


.

(1.48)

The fractional-order derivative Dα of the function x2.2 is to verify the corresponding

operational matrix D(α). The fractional- order derivative of the function f(x) = x2.2

in Caputo sense is calculated as

Dα f(x) =
Γ(3.2)

Γ(3.2− α)
x2.2−α. (1.49)

When m = 7 the comparison of the results for fractional-order derivative α = 0.8 is

shown in Figure 1.4.
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Figure 1.4: Comparison between Caputo fractional derivative and shifted
Legendre operational matrix.

In the case of two-dimensional space function, (φm,l(x) ⊗ φm,l(y)) be the

function vector, which is defined in equation (1.43), then the fractional partial deriva-

tive of order β > 0 with respect to x and y are given by using the properties of the

Kronecker product [78] as

Dβ
x(φm,l(x)⊗ φm,l(y)) ≈ (D(β) ⊗ I)(φm,l(x)⊗ φm,l(y)), (1.50)

Dβ
y (φm,l(x)⊗ φm,l(y)) ≈ (I ⊗D(β))(φm,l(x)⊗ φm,l(y)), (1.51)

where D(β) and I are an operational matrix of derivative β > 0 and identity matrix

of order (m+ 1)× (m+ 1) respectively.

***********


