List of Figures

1.1	Sources of groundwater contamination	4
1.2	Control volume for solute transport through porous media	9
1.3	A partition of the (x,t) – plane into uniform cells of size $h \times k$	27
1.4	Comparison between Caputo fractional derivative and shifted Legen-	
	dre operational matrix	35
2.1	Comparison between analytical and numerical results at $t = 2.5$, 10	
	when $\lambda = 0$	49
2.2	Plots of $u(x,t)/u_0$ vs. x at $t = 2.5, 5, 10, 15, 20, D = 0.6$ and $V = 0.6$	40
2.3	when $\lambda = 0$	49
2.5	when $\lambda \neq 0$	50
2.4	Plots of $u(x,t)/u_0$ vs. x at $t = 2.5, 5, 10, D = 0.6$ and $V = 0$ when	00
	$\lambda = 0.$	50
2.5	Plots of $u(x,t)/u_0$ vs. x at $t = 2.5, 5, 10, D = 0.6$ and $V = 0$ when	
	$\lambda eq 0$	51
2.6	Plots of $u(x,t)/u_0$ vs. x at $t = 2.5, 5, 10, 15, 20, D = 1$ and $V = 1$	
	when $\lambda = 0$	51
2.7	Plots of $u(x,t)/u_0$ vs. x at $t = 2.5, 5, 10, 15, 20, D = 1$ and $V = 1$	
	when $\lambda \neq 0$	52
3.1	Comparison of variation of $u(x,t)/u_0$ vs.t with analytical result for	
	$u_0 = x = 1$ and $V = \lambda = 0$ at $\alpha = 1$	63
3.2	Plots of $u(x,t)/u_0$ vs. t at $\alpha = 0.7, 0.8, 0.9, 1.0, V = 0.6$ for conserva-	
	tion case $(\lambda = 0)$	64
3.3	Plots of $u(x,t)/u_0$ vs. t at $\alpha = 0.7, 0.8, 0.9, 1.0, V = 0.6$ for non-	0.4
	conservation case $(\lambda = 0.6)$	64
4.1	Plot of the error function $ u_{exact}(x,1)-u_{numerical}(x,1) $ vs. x for Fisher	
1.0	equation	74
4.2	first type source boundary condition when $V = 0.6$ in/h and $\beta =$	
	1.6, 1.7, 1.8, 1.9 and 2 at fixed $\alpha = 1$	74

List of Figures

4.3	Plots of normalised concentration factor vs. column length with first type source boundary condition when $V=0$ in/h and $\beta=1.6,1.7,1.8,1.9$ and 2 at fixed $\alpha=1.$
4.4	Plots of normalised concentration factor vs. column length with first type source boundary condition when $V=0.6$ in/h and $\alpha=0.6,0.7,0.8,0.9$ and 1 at fixed $\beta=2.$
4.5	Plots of normalised concentration factor vs. column length with first type source boundary condition when $V=0$ in/h and $\alpha=0.6,0.7,0.8,0.9$ and 1 at fixed $\beta=2.$
5.1	Plots of normalised concentration factor vs. column length with first type source boundary condition for space-time fractional-order BFE
5.2	when $\alpha = 0.6, 0.7, 0.8, 0.9$ and 1 at fixed $\beta = 2$ 93. Plots of normalised concentration factor vs. column length with first type source boundary condition for space-time fractional-order BFE
5.3	when $\beta = 1.6, 1.7, 1.8, 1.9$ and 2 at fixed $\alpha = 1, \dots, 9^2$. Plots of normalised concentration factor vs. column length with first type source boundary condition for space-time fractional-order BHE
5.4	when $\alpha = 0.6, 0.7, 0.8, 0.9$ and 1 at fixed $\beta = 2, \dots, 94$ Plots of normalised concentration factor vs. column length with first type source boundary condition for space-time fractional-order BHE
5.5	when $\beta = 1.6, 1.7, 1.8, 1.9$ and 2 at fixed $\alpha = 1, \dots, 98$. Plots of normalised concentration factor $u(x, 1)$ vs. column length
	with first type source boundary condition for BFE, BHE and $\lambda = 0$ when $\alpha = 1, \beta = 2.$
6.1	The plot of the error function $u_{exact}(x, y, 1) - u_{6,6,6}(x, y, 1)$ for the Fishers equation
6.2	Plots of normalised concentration factor $u(x, y, 0.5)/u_0$ vs. column length for $\lambda = -1, 0, 1$ when $D = 25, V = 50, \alpha = 1, \beta = 2$
6.3	Plots of normalised concentration factor $u(x,y,t)/u_0$ vs. column length for time $t=0.2,0.4,0.6,0.8$ when $D=25,V=50,\alpha=1,\beta=2.10$
6.4	Plots of normalised concentration factor $u(x, y, 0.5)/u_0$ vs. column length for different $\alpha = 0.4, 0.6, 0.8$ and 1 when $\beta = 2, V = 50$ 108
6.5	Plots of normalised concentration factor $u(x, y, 0.5)/u_0$ vs. column length for different $\alpha = 0.4, 0.6, 0.8$ and 1 when $\beta = 2, V = 0$ 108
6.6	Plots of normalised concentration factor $u(x, y, 0.5)/u_0$ vs. column length for different $\beta = 1.4, 1.6, 1.8$ and 2 when $\alpha = 1, V = 50109$
6.7	Plots of normalised concentration factor $u(x, y, 0.5)/u_0$ vs. column length for different $\beta = 1.4, 1.6, 1.8$ and 2 when $\alpha = 1, V = 0, \ldots$ 109
7.1 7.2	Plots of the error function $ C_{exact}(x,y,1) - C(x,y,1) $ vs. x and y . 120 Plots of normalized mass concentration at a particular time $t=0.5$
-	for different particle size $s=0.1$ and $s=0.2$ for $\alpha=1,\ldots,120$

List of Figures _____ xi

7.3	Plots of normalized mass concentration at a particular time $t=0.5$	
	for different fractional time derivative $\alpha = 0.4, 0.6, 0.8, \text{ and } 1$	121
7.4	Plots of the normalized mass concentration vs. x and y for various	
	time at particle size $s = 0.1$ for $\alpha = 1$	121
7.5	Plots of the normalized mass concentration vs. x and y for various	
	time at particle size $s = 0.1$ for $\alpha = 0.4$	122