List of Figures

Figure 1.1 A unit cell of ABO ₃ type cubic perovskite oxide structure
Figure 1.2 Schematic crystal structures of $n = 1, 2$ and 3 members of Ruddlesden–Popper
type $A_{n+1}B_nO_{3n+1}$ [75]46
Figure 1.3 Unit cell of A ₂ BO ₄ and arrangement of A-O ₉ and B-O ₆ arrangement48
Figure 1.4 (a) Relaxed configuration of the $La_2CoO_{4+\delta}$ model. Circled region represents an
interstitial oxygen atom; and (b) migration paths in simulation. (I) indicates an interstitial
migration (II) shows an interstitialcy migration mechanism [75]
Figure 1.5 (a) Crystal structure of $Sr_2MnO_{3.5}$ with equatorial oxygen vacancies along bc
plane (b) Crystal structure of $Sr_2MnO_{3.5}$ with atoms displacing oxygen atoms from their
apical positions thus causing the oxygen atoms to fill the equatorial vacancies, such that the
fluorinated material reverts to I4/mmm symmetry (green- Sr, white-Mn, red- O, yellow-
vacant site) [114]58
Figure 1.6 (a) 3D representation of oxygen vacancy migration within the CoO6 octahedron
(pink and red), between the equatorial and the apical (green and blue) positions in
La _{0.8} Sr _{1.2} CoO _{3.9} ; (b) 3D representation of oxygen interstitial migration in La _{1.2} Sr _{0.8} CoO _{4.1} .
Each oxygen involved in the migration event is represented by a different color. Spheres of
the same color indicate the positions occupied by a specific atom over the simulation time
[75]60
Figure 2.1 Schematic representation of mechanical alloying method
Figure 2.2 TGA-DSC facility. Figure 2.3 A typical non-isothermal TGA-DSC Curve.
Figure 2.4 Balance with density Kit [Sartorius, BSA2245CW]80

Figure 2.5 Visualization of Bragg's law. 80
Figure 2.6 Schematic representation of $\theta/2\theta$ diffraction in Bragg-Brentano geometry81
Figure 2.7 XRD facilities, Central Instrument Facility (CIF) IIT (BHU)82
Figure 2.8 A typical FullProf software interface during Rietveld refinement process85
Figure 2.9 Experimental set-up used for Raman Measurement. (CRF IIT Kharagpur)92
Figure 2.10 Schematic presentation of the principle of Raman Spectroscopy
Figure 2.11 Principle of FT-IR spectroscopy and experimental set-up for FTIR measurement
facility94
Figure 2.12 Interaction of electron beam with sample specimen
Figure 2.13 The Schematic view of a Transmission Electron Microscope (TEM)96
Figure 2.14 (a) TEM facility at IIT-BHU (b) TEM grid for measurement (c) HR-TEM image
of sample (d) Distribution function for spherical grains
Figure 2.15 FESEM facilities, IIT (BHU)100
Figure 2.16 (a) Mechanism of X-ray Photoelectron Spectroscopy (b) Experimental set-up for
XPS measurement
Figure 2.17 Experimental Set-up for UV-Vis measurement (IIT BHU)
Figure 2.18 Tauc plot generated by Eq. 2.21
Figure 2.19 (a) Principle of photoluminescence spectroscopy (b) Experimental set-up used in
the present investigation105
Figure 2.20 MPMS 3 setup (IIT BHU)107
Figure 2.21 Experimental Set-up used for Electrical Characterization of sample (IIT BHU).

Figure 2.22 Equivalent circuit for polycrystalline ceramic sample and their frequency
response in complex Impedance plot112
Figure 2.23 Equivalent circuit for polycrystalline ceramic sample and corresponding
frequency response in the complex Modulus plots113
Figure 2.24 Conductivity spectra of a polycrystalline material116
Figure 3.1 Simultaneous TGA/DSC curve of (a) raw material SnO ₂ (b) raw material SrCO ₃
(c) mixture of raw material $SrCO_3$ and SnO_2 (d) Derivative of thermogravimetric (DTG)
curve of a mixture of raw materials121
Figure 3.2 Powder X-ray diffraction pattern of the prepared mixture calcined at different
temperatures
Figure 3.3 Core-shell model for the phase formation of Sr ₂ SnO ₄ using raw materials SrCO ₃
and SnO ₂ 124
Figure 3.4 Rietveld refined pattern of X-ray diffraction data
Figure 3.5 Room temperature Raman Spectrum of Sr ₂ SnO ₄ 128
Figure 3.6 Fourier transform of Infra-red spectra of Sr ₂ SnO ₄ 129
Figure 3.7 (a) SEM micrograph (b) Histogram generated for average grain129
Figure 3.8 (a) Survey scan report of Sr ₂ SnO ₄ (b-d) Core-level XPS spectra of individual
element Sr (3d), Sn (5d) and O (1s)131
Figure 3.9 UV-Visible absorption spectra and Tauc plot of Sr ₂ SnO ₄ 133
Figure 3.10 Variation of (a) Dielectric constant (b) Dissipation factor with temperature at
different frequencies

Figure 3.11 Variation of (a) Real part of modulus (M') (b) Imaginary part of modulus fitted
with Eq. (3.9), with frequency at different temperatures. (c) KWW parameter with respect to
temperature (d) Nyquist plot (e) Variation of logf max with 1000/T (f) Scaled Modulus
against scaled frequency at various temperatures137
Figure 3.12 (a) Logarithmic conductivity with logarithmic frequency (fitted with power law)
(b) Arrhenius plot (c) Power exponent (n) with temperature (d) logarithmic of ac conductivity
with the temperature at a constant frequency (10 KHz)
Figure 3.13 Scaled conductivity vs. scaled frequency spectrum at different temperatures141
Figure 4.1 (a) Room temperature powder X-ray diffraction pattern of prepared samples and
(b) enlarge view of (116) and (123) diffraction peak (c) Room temperature XRD pattern
refined using the Rietveld method147
Figure 4.2 (a) Structure of prepared solid solution SSB2 (b) Variation of lattice parameter a,
b, c with respect to the composition of Sr151
Figure 4.3 Fourier Transform Infrared (FTIR) spectra of all samples152
Figure 4.4 (a) Bright field TEM image (b) Histogram of distribution of particle size (c)
(SAED) pattern and (d) High-resolution transmission electron image of the sample SSB2. 153
Figure 4.5 High-Resolution Scanning electron micrograph of freshly fractured surface of the
sintered pellets (a) SSB0 (b) SSB1 (c) SSB2 (d) SSB4 (e) SSB8 (f) SSB10154
Figure 4.6 Histogram fitted with Gaussian function of sample (a) SSB0 (b) SSB1 (c) SSB2
(d) SSB4 (e) SSB8 (f) SSB10155
Figure 4.7 (a) X-ray photoelectron spectroscopy (XPS) survey scan report for sample SSB4,

Figure 4.9 (a) Real part of modulus M' with frequency for all compositions at 400°C (b) Variation of Real part of modulus M' with frequency at several temperatures (c) Variation of Imaginary part M'' with frequency at several temperatures fitted with Eq. (11) (d) Arrhenius plot for relaxation frequency (e) Variation of KWW parameter with temperature (f) Scaled modulus vs. scaled frequency at several temperatures (Temperature in °C)......161

Figure 4.10 Nyquist plot for modulus fitted with cole-cole equation at 400°C......164

Figure 5.3 Variation of (a) Degree of distortion (R) and (b) lattice parameters with
composition of La (x)177
Figure 5.4 Size-strain plots (SSP) for the determination of crystallite size and lattice strain.
Figure 5.5 (a) Transmission electron micrograph of a representative sample SSL4, (b)
Distribution function fitted with Gaussian Function and (c) Selected Area Electron
Diffraction (SAED) pattern
Figure 5.6 Room temperature Raman spectrum of the prepared samples
Figure 5.7 (a) Room temperature Fourier transform infrared (FTIR) spectrum of the sample
(b) Enlarge view of band corresponding to stretching mode of Sr-O and Sn-O ₆ 183
Figure 5.8 Scanning electron micrograph of the fracture surface of sintered sample (a) SSL0
(b) SSL1 (c) SSL2 (d) SSL4 (e) SSL6 (f) SSL10184
Figure 5.9 Histogram between no. of grains and grain size (a) SSL0 (b) SSL1 (c) SSL2 (d)
SSL4 (e) SSL6 (f) SSL10
Figure 5.10 (a) Survey scan report of SSL4 (b-e) Core level spectra of Sr (3d), La (3d), Sn
(3d) and O (1s) spectra
Figure 5.11 Room temperature UV-Visible absorption spectrum of the prepared samples. 188
Figure 5.12 Tauc plot (by putting $m=1/2$ for direct band gap and $m=2$ for indirect band gap)
obtained from absorption data of the samples
Figure 5.13 (a) Variation of AC conductivity with logarithmic of frequency, (b) Arrhenius
plot generated for all sample using Eq. (13) (c) Arrhenius plot generated for all sample using
hopping frequency (d) Variation of dc conductivity vs. hopping frequency for all sample. 194
Figure 5.14 Variation of dc conductivity with composition of La (x) at 400°C195

Figure 6.8 Tauc plot generated for both direct and indirect band gap of all SSN samples
using Eq. (2.21)
Figure 6.9 (a) Room temperature excitation spectra of samples for emission $\lambda emi. =$
1060 nm (b) Room temperature emission spectra for all samples under excitation
wavelength $\lambda exc. = 596 \ nm.$
Figure 6.10 Room temperature M-H curve for all samples
Figure 7.1 (a) X-ray diffraction pattern of all samples (b) Enlarged view of peak (103) &
(110)
Figure 7.2 (a) Rietveld refinement pattern of Eu-doped samples (b) Unit Cell of a sample
SSE4 generated by VESTA software
Figure 7.3 Room temperature Fourier transform infrared (FTIR) spectra of all samples235
Figure 7.4 Field emission scanning electron micrograph (FESEM) of sintered samples (a)
SSE0 (b) SSE1 (c) SSE2 (d) SSE4 (e) SSE6 (f) SSE10236
Figure 7.5 Histogram fitted with Gaussian function (a) SSE0 (b) SSE1 (c) SSE2 (d) SSE4 (e)
SSE6 (f) SSE10237
Figure 7.6 (a) Survey scan report of $Sr_2Sn_{0.99}Eu_{0.01}O_4$, Core level XPS spectra of (b) Sr 3d (c)
Sn 3d (d) O 1s239
Figure 7.7 (a) UV-Vis spectra of all samples (b-f) Tauc plot generated from absorption for
both direct and Indirect Band gap241
Figure 7.8 (a) Excitation spectra of a reference sample SSE4 for emission $\lambda em = 612 nm$
(b) Emission spectra of all samples under excitation wavelength $\lambda exc = 466 nm242$
Figure 7.9 (a) Energy band diagram of Eu-doped Sr ₂ SnO ₄ sample (b) CIE coordinate of all
sample

 Figure 7.10 Decay time curve for wavelength (a) 535 nm (b) 572 nm (c) 614 nm (d)

 Variation of life time with composition.