LIST OF FIGURES

Figure	Caption	Page No
1.1	Emission outline of SO ₂ and NO _x	2
1.2	Sources of SO ₂ emission	4
1.3	Sources of NO _x emission	5
1.4	Coal compositions in mass percent	7
1.5	Classification of the process	14
2.1	Schematic for absorption of SO ₂ and NO in a bubbling reactor using Ha-	32
	Na/NaClO ₂	
2.2	The process for SO ₂ and NO absorption using ammonia-Fe(II) EDTA for	33
	sintering plants	
2.3	Absorption of SO ₂ and NO in rotating drum biofilter using FeII(EDTA) as	34
	absorbent	
2.4	Experimental flow sheet for absorption of SO_2 and NO using ammonia-	36
	Fe(II)EDTA	
2.5	Experimental flow sheet for SO ₂ , NO and Hg ⁰ removal by integrative pre-	37
	oxidation and post-absorption	
2.6	Experimental flow sheet for removal of SO_2 and NO by combined	38
	$Na_2S_2O_8/Fe^{2+}$ -EDTA solutions	
2.7	Process flow sheet for wet scrubbing of SO_2 and NO combined with a	39
	plasma electrostatic precipitator	
2.8	Process flow sheet for removal of SO_2 and NO by ferrate (VI) solution	41
2.9	Process flow sheet for SO_2 and NO removal by advanced oxidation using	42
	ultraviolet/H2O2/NaOH	

2.10 Experimental flow sheet for removal of SO₂ and NO by wet scrubbing using 43 urea solution 2.11 Process flow sheet of SO₂ and NO absorption in liquid phase with new 45 complex absorbent 2.12 Absorption of SO₂ and NO into pyrolusite slurry combined with gas-phase 46 oxidation ozone 2.13 Experimental flow sheet for SO₂ and NO removal by advanced oxidation 47 using UV/H₂O₂ 2.14 Experimental outline of removal of SO₂ and NO by bubbling reactor system 49 using NaClO₂ solution 2.15 Process flow sheet of SO₂ and NO removal in an integrated wet scrubber-50 electrochemical cell system 2.16 Schematic diagram for NO removal in bubbling reactor using aqueous ClO₂ 52 scrubbing 2.17 Absorption of SO₂ and NO in double-stirred vessel using FeII(EDTA) 53 combined with Na₂SO₃ solution 2.18 Flow diagram for removal of SO₂, NO and particulate by scrubber system 55 using wet absorbent 2.19 Process flow sheet for SO₂ and NO removal by using ozone injection and 56 absorption-oxidative technique 2.20 Experimental flow sheet for absorption of SO₂ and NO in hexamine 58 cobalt(II)/iodide solution 2.21 Process flow sheet for absorption of SO₂ and NO₂ in water 59 Absorption of SO₂ and NO_x in spraying scrubber using acidic NaClO₂ 2.22 61 solutions

- 2.23 Process flow sheet for absorption of SO₂ and NO using KMnO₄/NaOH 62 solutions
- 3.1 Experimental set-up for simultaneous absorption of SO₂ and NO in bubble 89 column
- 3.2 Experimental setup for simultaneous absorption of SO₂ and NO in magnetic
 91 stirrer vessel
- 3.3 Experimental set-up for simultaneous absorption of SO₂ and NO in spray98 column
- 4.1 Flow pattern of species during absorption of SO₂ and NO using NaClO 104 solution
- 4.2 Effect of time on removal of NO and SO₂ in bubble column using NaClO 114
- 4.3 Effect of NaClO concentration on removal of NO and SO₂ in bubble column 116
- 4.4 Effect of absorbent temperature on removal of NO and SO₂ in bubble 117 column using NaClO
- 4.5 Effect of time on removal of NO and SO₂ in stirred vessel using NaClO 120
- 4.6 Effect of NaClO concentration on removal of NO and SO₂ in stirred vessel 121
- 4.7 Effect of absorbent temperature on removal of NO and SO₂ in stirred vessel 122using NaClO
- 4.8 Effect of initial SO₂ concentration on removal of NO and SO₂ in stirred 124 vessel using NaClO
- 4.9 Effect of initial NO concentration on removal of NO and SO₂ in stirred 125 vessel using NaClO
- 4.10 Effect of initial pH of NaClO on removal of NO and SO₂ in stirred vessel 126
- 4.11 Effect of Ca(OCl)₂ concentration on removal of NO and SO₂ in stirred vessel 129

4.12	Effect of absorbent temperature on removal of NO and SO_2 in stirred vessel	130
	using Ca(OCl) ₂	
4.13	Effect of mole ratio of absorbent blend NaOH/NaClO in stirred vessel	132
4.14	Effect of absorbent temperature in stirred vessel using NaOH/NaClO blend	134
4.15	The N_{SO_2} vs. $p_{SO_{2g}}$ for estimation of $k_{SO_{2g}}$ with NaClO	136
4.16	log N _{N0} vs. log C_{N0_i} for estimation of reaction order of NO with NaClO	138
4.17	Effect of temperature on enthalpy change with NaClO	140
4.18	Effect of temperature on Gibbs free energy change with NaClO	141
4.19	Effect of time on removal of SO ₂ and NO using NaClO in spray column	146
4.20	Effect of NaClO concentration on removal of SO2 and NO in spray column	147
4.21	Effect of temperature on removal of SO2 and NO using NaClO in spray	148
	column	
4.22	Effect of initial SO ₂ concentration on removal of NO and SO ₂ using NaClO	150
	in spray column	
4.23	Effect of initial NO concentration on removal of SO ₂ and NO using NaClO	151
	in spray column	
4.24	Effect of initial pH of absorbent on removal of SO_2 and NO using NaClO in	152
	spray column	
4.25	Effect of addition of CO2 on removal of SO2 and NO using NaClO in spray	153
	column	
4.26	Effect of temperature on enthalpy change with NaClO/NH ₃	157
4.27	Effect of temperature on Gibbs free energy change with $NaClO/NH_3$	158
4.28	FTIR-spectra analysis of NaClO/NH3 blend (a) before and (b) after	161
	absorption of SO ₂ and NO	

- 4.29 Estimation of equilibrium time for SO₂ and NO removal in stirred vessel 164 with NaClO/NH₃
- 4.30 Estimation of optimal molar ratio for SO₂ and NO removal in stirred vessel165 with NaClO/NH₃
- 4.31 Estimation of optimal temperature for SO₂ and NO removal in stirred vessel 166 with NaClO/NH₃
- 4.32 Estimation of optimal pH for SO₂ and NO removal in stirred vessel with 168 NaClO/NH₃
- 4.33 Effect of initial SO₂ concentration for SO₂ and NO removal in stirred vessel
 with NaClO/NH₃
- 4.34 Effect of initial NO concentration for SO₂ and NO removal in stirred vessel 171 with NaClO/NH₃
- 4.35 Comparison of NO maximum removal efficiency with respect to operating 172 parameters in semi batch and spray column with NaClO/NH₃
- 4.36 Comparison of SO₂ maximum removal efficiency with respect to operating 173 parameters in semi batch and spray column with NaClO/NH₃
- 5.1 Proposed outline for simultaneous absorption of SO₂ and NO in coal fired 175
 thermal power plant by NH₃/NaClO scrubbing
- 5.2 Proposed view of bio layer around the power plants 177