Titl	e			Page No.
List	of Fig	ures		
List	of Tab	les		
List	of Syn	nbols		
List	of Abb	oreviatior	15	
1	1 INTRODUCTION			
	1.1	Genera	1	1
	1.2	Source	s of SO ₂ and NO emission	2
		1.2.1	Natural sources	3
		1.2.2	Man-made sources	3
			1.2.2.1 Sulfur oxides (SO _x)	4
			1.2.2.2 Nitrogen oxides (NO _x)	5
			1.2.2.3 SO ₂ and NO _x	6
	1.3	Fuel bu	urning and stack compositions	6
	1.4	1.4 Effects of SO ₂ and NO		
		1.4.1	Effects of SO ₂	8
		1.4.2	Effects of NO _x	10
	1.5	Abaten	nent of SO ₂ and NO _x	11
		1.5.1	NO _x reduction technologies	12
		1.5.2	SO ₂ reduction technologies	13
		1.5.3	Simultaneous removal of SO ₂ and NO	14
			1.5.3.1 Dry process	16
			1.5.3.2 Wet process	22

		1.5.3.3 Bio process	27
	1.6	Technical difficulties of various processes	27
	1.7	Origin of the problem	28
	1.8	Objective of the present work	29
2	LITE	CRATURE REVIEW	31
	2.1	Removal by using a complex mixture of Ha-Na/NaClO ₂	31
	2.2	Absorption using ammonia-Fe(II)EDTA for sintering plants	32
	2.3	Rotating drum biofilter coupled with complexing absorption by Fe ^{II} (EDTA)	34
	2.4	Absorption in pilot-scale reactor using NH ₃ -Fe(II)EDTA	35
	2.5	Integrative pre-oxidation and post-absorption with a cost-effective complex	36
		oxidant	
	2.6	Removal by combined persulfate and ferrous-EDTA solutions	38
	2.7	Wet scrubbing combined with a plasma electrostatic precipitator	39
	2.8	Removal by ferrate (VI) solution	40
	2.9	Advanced oxidation using ultraviolet/H2O2/NaOH process	41
	2.10	Removal by wet scrubbing using urea solution	42
	2.11	Absorption in liquid phase with new complex Absorbent (NaClO/NaClO ₂)	44
	2.12	Pyrolusite slurry absorption combined with gas-phase oxidation	45
	2.13	Advanced oxidation using UV/H ₂ O ₂	46
	2.14	De-SO ₂ and De-NO study in bubbling reactor using NaClO ₂ solution	48
	2.15	Removal in an integrated wet scrubber-electrochemical cell system	49
	2.16	Removal of NO from simulated gas in a bubbling reactor using aqueous	51
		ClO ₂	
	2.17	Absorption using $Fe^{II}EDTA$ combined with Na ₂ SO ₃ solution	53

2.18	Remova	al of SO ₂ , NO and particulate using Fe(II)-EDTA in pilot-scale	54	
	scrubbe	r		
2.19	Removal by using ozone injection and absorption-reduction technique			
2.20	Absorp	tion in hexamine cobalt(II)/iodide solution	57	
2.21	Modelli	ing of mass transfer during absorption with chemical reaction	59	
2.22	Absorpt	tion of SO_2 and NO_x in acidic $NaClO_2$ solution under spraying	60	
	column			
2.23	Absorpt	tion using KMnO ₄ /NaOH solutions	61	
2.24	Researc	ch Gap	63	
EXPI	ERIMEN	JTAL	73	
3.1	Apparat	tus/Instruments/reagents for experimentation	73	
	3.1.1	Gas cylinders with two stage pressure regulators	73	
	3.1.2	Mass flow controllers and digital read out box	76	
	3.1.3	Gas mixing cum pressure releasing chamber	77	
	3.1.4	Tubing	77	
	3.1.5	Joints	77	
	3.1.6	Absorption column	78	
	3.1.7	Submersible pump	79	
	3.1.8	Liquid storage tank	80	
	3.1.9	Gas flow meter	80	
	3.1.10	Silica gel column	80	
	3.1.11	Multi flue gas analyzer	80	
	3.1.12	Temperature controlled water bath	81	
	3.1.13	pH meter	81	
	3.1.14	Reagents	81	

3

	3.2	Method	ology ada	logy adapted			
	3.3	Experin	nental pro	cedure	85		
		3.3.1	Absorpt	ion in bubble column with NaClO	86		
		3.3.2	Absorpt	ion in magnetic stirrer vessel	91		
			3.3.2.1	Absorption in magnetic stirrer vessel with NaClO	92		
			3.3.2.2	Absorption in magnetic stirrer vessel with Ca(OCl) ₂	93		
			3.3.2.3	Absorption in magnetic stirrer vessel with NaClO/NaOH	95		
		3.3.3	Absorpt	ion in magnetic stirrer vessel with Ca(OCl) ₂	96		
		3.3.4	Feasibili	ity of NaClO/NH ₃ blend for NH ₃ as additive	100		
			3.3.4.1	Absorption in semi batch magnetic stirrer vessel with	101		
				NaClO/NH ₃ blend			
			3.3.4.2	Absorption in continuous spray column with	102		
				NaClO/NH ₃ blend			
4	RESU	J LTS AN	ND DISC	USSIONS	103		
	4.1	Theory	of absorp	tion of SO ₂ and NO into NaClO	104		
		4.1.1	Process	chemistry	104		
		4.1.2	Kinetic	expressions	106		
		4.1.3	Data ana	alysis	110		
			4.1.3.1	Removal efficiency (n)	110		
			4.1.3.2	Molar absorption flux	110		
			4.1.3.3	Interfacial concentration and pressure	110		
			4.1.3.4	Physical and mass transfer parameters	111		
		4.1.4	Thermo	dynamics of the process for SO ₂ and NO absorption	113		
	4.2	Absorpt	tion in ser	ni batch bubble column with NaClO	113		
		4.2.1	Effect of	f contact time using NaClO in bubble column	114		

	4.2.2	Effect of initial SO ₂ concentration using NaClO in bubble column	115
	4.2.3	Effect of initial NO concentration using NaClO in bubble column	115
	4.2.4	Effect of NaClO concentration in bubble column	116
	4.2.5	Effect of absorbent temperature using NaClO in bubble column	117
	4.2.6	Effect of initial pH of NaClO in bubble column	118
4.3	Absorp	tion in semi batch magnetic stirrer vessel with NaClO	118
	4.3.1	Effect of contact time using NaClO in stirred vessel	120
	4.3.2	Effect of NaClO concentration using NaClO in stirred vessel	121
	4.3.3	Effect of absorbent temperature using NaClO in stirred vessel	122
	4.3.4	Effect of initial SO ₂ concentration using NaClO in stirred vessel	123
	4.3.5	Effect of initial NO concentration using NaClO in stirred vessel	124
	4.3.6	Effect of initial pH of NaClO in stirred vessel	125
4.4	Absorp	tion in semi-batch magnetic stirrer vessel with Ca(OCl) ₂	127
	4.4.1	Effect of contact time using Ca(OCl) ₂ in stirred vessel	128
	4.4.2	Effect of Ca(OCl) ₂ concentration in stirred vessel	128
	4.4.3	Effect of absorbent temperature using Ca(OCl) ₂ in stirred vessel	129
	4.4.4	Effect of initial pH of Ca(OCl) ₂ in stirred vessel	131
	4.4.5	Effect of initial SO ₂ concentration using Ca(OCl) ₂ in stirred	131
		vessel	
	4.4.6	Effect of initial NO concentration using Ca(OCl) ₂ in stirred	131
		vessel	
4.5	Absorp	tion in semi batch magnetic stirrer vessel with NaOH/NaClO	133
	4.5.1	Effect of mole ratio of NaOH/NaClO in stirred vessel	133
	4.5.2	Effect of absorbent temperature in stirred vessel with NaOH/NaClO	134

4.6	Compa	rison of the results in semi-batch column with some published	135
	works		
4.7	Estima	tion of reaction kinetics of SO ₂ and NO with NaClO	137
	4.7.1	Estimation of $k_{SO_{2g}}$ with NaClO	137
	4.7.2	Estimation of reaction order for NO with NaClO	138
	4.7.3	Calculation of Hatta number with NaClO	139
4.8	Thermo	odynamic parameters of SO2 and NO absorption with NaClO	139
	4.8.1	Enthalpy change for absorption of SO ₂ and NO in NaClO	139
	4.8.2	Gibbs free energy change for absorption of SO_2 and NO in	141
		NaClO	
	4.8.3	Equilibrium constant for absorption of SO ₂ and NO in NaClO	142
	4.8.4	Equilibrium partial pressure for absorption of SO_2 and NO in	142
		NaClO	
4.9	Absorp	tion in continuous spray column with NaClO	143
	4.9.1	Effect of time using NaClO in spray column	145
	4.9.2	Effect of NaClO concentration in spray column	146
	4.9.3	Effect of temperature using NaClO in spray column	148
	4.9.4	Effect of initial SO ₂ concentration using NaClO in spray column	149
	4.9.5	Effect of initial NO concentration using NaClO in spray column	150
	4.9.6	Effect of various initial pH of absorbent using NaClO in spray	151
		column	
	4.9.7	Effect of addition of CO ₂ to simulated gas stream using NaClO in	153
		spray column	
	4.9.8	Comparison of SO ₂ and NO removal efficiencies for continuous	154
		absorption column	

4.10	Effect of additive NH ₃ solution with NaClO					
	4.10.1	Thermody	ynamic parameters for absorption of SO2 and NO in	155		
		NaClO/N	H_3			
		4.10.1.1	Enthalpy change for absorption of SO ₂ and NO in	156		
			NaClO/NH ₃			
		4.10.1.2	Gibbs free energy change for absorption of SO_2 and	157		
			NO in NaClO/NH ₃			
		4.10.1.3	Equilibrium constant for absorption of SO_2 and NO in	158		
			NaClO/NH ₃			
		4.10.1.4	Equilibrium partial pressure for absorption of SO ₂ and	159		
			NO in NaClO/NH ₃			
	4.10.2	Feasibilit	y of NaClO/NH ₃ blend for SO ₂ and NO absorption	160		
	4.10.3	Fourier-tr	ansform infrared spectroscopy analysis	160		
	4.10.4	Absorptio	on in semi batch magnetic stirrer vessel with	162		
		NaClO/N	H_3			
		4.10.4.1	Saturation time estimation in stirred vessel with	163		
			NaClO/NH ₃			
		4.10.4.2	Effect of molar ratio using NaClO/NH ₃ in stirred	164		
			vessel			
		4.10.4.3	Effect of temperature using NaClO/NH ₃ in stirred	166		
			vessel			
		4.10.4.4	Effect of NaClO-NH ₃ blend pH in stirred vessel	167		
		4.10.4.5	Effect of initial SO ₂ concentration using NaClO/NH ₃	169		
			in stirred vessel			

			4.10.4.6	Effect of initial NO concentration using NaClO/NH ₃	170
				in stirred vessel	
		4.10.5	Simultane	eous absorption in continuous spray column with	172
			NaClO/N	H_3	
5	PRO	POSED	FEASIBLI	E METHOD FOR COAL FIRED THERMAL	174
	POW	VER PLA	ANT USIN	G NH3/NaClO SCRUBBING	
	5.1	Propose	ed outline o	f this process	174
	5.2	Propose	ed preparati	on of bio layer around the power plants	176
6	CON	CLUSIC	ONS AND I	RECOMMENDATIONS	179
	6.1	Conclu	sions		179
		6.1.1	Absorptio	on of SO_2 and NO in bubble column	179
		6.1.2	Absorptio	on of SO ₂ and NO in magnetic stirred vessel	180
		6.1.3	The kinet	ics, mass transfer and thermodynamics of the process	182
		6.1.4	Absorptio	on of SO ₂ and NO in spray column	183
		6.1.5	Proposed	method for preparation of bio layer	184
	6.2	Recom	mendations		184
	Refe	rences			185
	Appe	endix A			202
	Appe	endix B			236
	Appe	endix C			238