LIST OF ABBREVIATIONS

ACF	activated carbon fibers
АСН	activated carbon honeycomb
AFS	Atomic Fluorescence Spectroscopy
BET	Brunauer-Emmett-Teller method
CFB	circulating fluidized bed
CNT	carbon nanotube
De-SO ₂	Desulphurization
De-NO	De-nitrification
EDX	Energy-dispersive X-ray spectroscopy
ESP	electrostatic precipitator
FGD	flue gas desulfurization
FT-IR	Fourier transform Infrared radiation
MEO	mediated electrochemical oxidation
MFC	Mass flow controller
NDIR	non-dispersive infrared sensor
ORP	oxidation-reduction potential

PCVD Plasma chemical vapour deposition

- PMMA Poly methyl methacrylate
- PSAC palm shell activated carbon
- SCR selective catalytic reduction
- SEM scanning electron microscope
- SNCR selective non-catalytic reduction
- TEM transmission electron microscope
- TPD temperature programmed desorption
- UV-vis Ultraviolet-visible spectroscopy
- XPS X-ray photoelectron spectroscopy
- XRD X-ray diffraction

а	Constant
b	Saturated quantity of no_x (or SO ₂) adsorbed on powdery silica
a_g	Gas-liquid specific interfacial area, (m ⁻¹)
C_{NO_l}	Concentration of NO in bulk of the liquid phase, (kmol/m ³)
C_{NO_i}	Concentration of NO in liquid at gas-liquid interface, (kmol/m ³)
C _{NaClO}	Concentration of naclo, (M)
C_p	Specific heat at pressure
C_{p_i}	Specific heat at pressure for component i
D	Diffusion coefficient
D _{NOl}	Diffusion constant of NO in liquid
E	Enhancement factor
Ef (NO)	Removal efficiency of NO
<i>Ef</i> (<i>S0</i> 2)	Removal efficiency of SO2
ΔG	Change in Gibbs free energy for the process
ΔG_i	Individual Gibbs free energy change of the component
Н	Henry's law constant, (Pa.m ³ /kmol)
На	Hatta coefficient
H_1	Henry's law coefficients at 298.15 K
H_2	Henry's law coefficients at 313 K
ΔH	Desired enthalpy change of the process at constant pressure
K	Equilibrium constant for the process at any temperature
INaClO	Ionic strength of naclo
KNaCl0	Salting out parameter for naclo

- K_{NO_a} Overall mass transfer coefficient based on the gas phase
- k_{NO_a} Gas phase mass transfer coefficient, (kmol/m²s.Pa)
- k_{NO_1} Liquid phase mass transfer coefficient, (m/s)
- k_{rNO} Pseudo mth order rate constant
 - m Reaction order
- M_{SO2} Molecular weight of SO₂ (kg/kmol)
- M_{NO} Molecular weight of NO (kg/kmol)
- N_{NO} Molar absorption flux of NO, (kmol/m².s)
- N_{SO_2} Molar absorption flux of SO₂, (kmol/m².s)
 - η Removal efficiency
 - p No_x or SO₂ concentration in gas phase at equilibrium
- p_{p_i} Equilibrium partial pressures of the product
- p_{R_i} Equilibrium partial pressures of the reactant
- p_{in} Inlet concentration of the gas, (ppm)
- p_{out} Outlet concentration of the gas, (ppm)
- $p_{SO_{2h}}$ Partial pressure of SO₂, (Pa)
- $p_{SO_{2a}}$ Partial pressure of SO₂ in the bulk of the gas phase, (Pa)
- p_{NO_b} Partial pressure of NO in the bulk of the gas phase, (Pa)
- p_{NO_i} Partial pressure of NO in gas at gas-liquid interface, (Pa)
- $p_{NO(f)}$ Final concentration of NO
- $p_{NO(i)}$ Initial concentration of NO
- $p_{SO_2(f)}$ Final concentration of SO₂
- $C_{SO_2(i)}$ Initial concentration of SO₂

- ρ_{SO_2} Density in SO₂, (kg/m³)
- ρ_{NO} Density of NO, (kg/m³)
- q Amount of no_x or SO₂ adsorbed on powdery silica
- Q_g Gas flow rate, (m³/s)
- r Reaction rate
- R² Regression coefficient
- S Entropy
- T Temperature, (K)
- V_l Volume of absorbent, (m³)
- $v_i \qquad \text{Molar volume of component } i$
- X_{S_1} Concentration of anions in the liquid
- X_{S_2} Concentration of cations in the liquid
- X_{S_3} Concentration of dissolved gas in the liquid
- γ_p Stoichiometric coefficients of product
- γ_R Stoichiometric coefficients of reactant