LIST OF FIGURES

Figure 1.2: Flow chart of the plan of the experimental work.	24
Figure 2.1: Schematic sketch of (a)Cyclic and (b)Isothermal test	27
Figure 2.2: Salt coating on 904L sample: (a)hot plate with a sample, (b)salt spray	
gun and (c)salt coated sample.	29
Figure 2.3: Optical micrograph showing microstructure of the SASS 904L	
solution treated at 1100 °C for 1h and water quenched.	30
Figure 3.1: Weight change per unit area (ΔW) during oxidation of the SASS 904L	
in air at 500, 550, 600 and 650 °C up to 100 h.	36
Figure 3.2: Variation of square of weight gain per unit area $(\Delta W)^2$ with time from	
oxidation of the SASS 904L in air at 500, 550, 600 and 650 °C, up to	
100 h.	37
Figure 3.3: Activation energy plot (kp vs 1/T) for the 1 st stage (upto 25h) cyclic	
oxidation from 500-650 °C).	38
Figure 3.4: XRD patterns of the SASS 904L (a) in solution treated condition;	
following oxidation for 100 h at: (b)500, (c)550, (d)600 and (e)650	
°C.	39
Figure 3.5: Surface morphologies of the samples oxidized for 100 h at different	
temperatures: (a)500, (b)550, (c)600 and (d)650 °C. Compositional	
analysis by EDS was carried out from the rectangular enclosed	
regions.	40
Figure 3.6: Cross-sectional SEM-EDS of the samples oxidized at different	
temperatures: (a)500, (b)550, (c) 600 and (d)650 °C for 100 h.	41
Figure 3.7: EPMA analysis of cross-sections of the samples exposed at 500 to	
650 °C up to 100 h.	42
Figure 3.8: Schematic process of oxidation of the SASS 904L from 100 h of	
exposure at different temperatures: (a)500, (b)550, (c)600 and	
(d)650 °C.	47
Figure 4.1: Plots of (a) ΔW vs t, (b) ΔW^2 vs t and (c) Raman spectra of the samples	

{ vi }

exposed for 25 and 100 h at 500, 550, 600 and 650 °C.	51
Figure 4.2: XRD spectra of the samples isothermally oxidized for 25, 50, 75 and	
100 h at 500-650 °C.	52
Figure 4.3: SE and BSE images showing surface morphology of: (A,a)as-polished	
(unexposed) sample and the samples exposed isothermally for 25 and	
100 h at: (B,C,b,c)500; (D,E,d,e)550; (F,G,f,g)600; and (H,I,h,i)650	
°C, respectively in air atmosphere.	54
Figure 4.4: EDX analysis of the oxidized surface from: (a) clusters of pores and	
(b) clusters of oxides.	55
Figure 4.5: EPMA analysis of cross section of the sample exposed for 25 h at	
650 °C.	56
Figure 4.6: EPMA analysis of cross section of the sample exposed for 50 h at	
650 °C.	57
Figure 4.7: EPMA analysis of cross section of the sample exposed for 75 h at	
650 °C.	57
Figure 4.8: EPMA analysis of cross section of the sample exposed for 100 h at	
650 °C.	58
Figure 5.1: Photographs of the samples corroded at 500-650 °C for 100 h by:	
(a,b,c,d) SM1 and (e,f,g,h) SM2.	65
Figure 5.2: Weight change per unit area (ΔW) versus time plots of the samples	
exposed at 500-650 °C up to 100 h and corroded from coatings of	
(a)SM1(Cl:S=40:60) and (b)SM2(Cl:S=60:40).	67
Figure 5.3: Square of weight gain per unit area $(\Delta W)^2$ versus time plots of the	
samples exposed at 500-650 °C up to 100 h and corroded from	
coatings (a)SM1(Cl:S=40:60) and (b)SM2(Cl:S=60:40).	67
Figure 5.4: Phase analysis of the corrosion products by XRD, resulting from	
exposure at 500-650 °C up to 100 h and corroded by: (a) SM1 and (b)	
SM2.	70
Figure 5.5: Surface morphology of the samples exposed up to 100 h at 500 °C and	
corroded by: (a) SM1 and (b) SM2.	73

Figure 5.6:	Surface morphology of the samples exposed up to 100 h at 550 °C and	
	corroded by: (a) SM1 and (b) SM2.	73
Figure 5.7:	Surface morphology of the samples exposed up to 100 h at 600 °C,	
	corroded by (a) SM1 and (b) SM2.	74
Figure 5.8:	Surface morphology of the samples coated with SM1 and exposed at	
	650 °C up to 100 h showing: (a) spallation and (b) no spallation.	75
Figure 5.9:	Surface morphology of the sample coated with SM2 and exposed at	
	650 °C, up to 100 h showing: (a) no spallation and (b) region below	
	the spalled scale.	76
Figure 5.10	: SEM micrographs showing cross sectional features of the samples hot	
	corroded by SM1 up to 100 h at: (a) 500, (b) 550, (c) 600 and (d) 650	
	°C; up to 100 h.	77
Figure 5.11	: SEM micrographs showing cross section of the samples hot corroded	
	by SM2 up to 100 h at: (a) 500, (b) 550, (c) 600 and (d) 650 °C	78
Figure 5.12	: EPMA mapping of cross section of the sample hot corroded by SM1	
	at 650 °C up to 100 h.	80
Figure 5.13	: EPMA mapping of cross section of sample hot corroded by SM2 salt	
	mixture and exposed at 650 °C up to 100 h.	81
Figure 5.14	: EPMA line scans of cross sections of the samples showing variation	
	in concentration of the elements Fe, Ni, Mn, Mo, Cu and O, exposed	
	at 650 °C for 100 h in air, coated with (a) SM1 and (b) SM2.	82
Figure 6.1:	Plots showing corrosion behavior of SASS 904L coated by SM1,	
	during isothermal exposure at 500-650 °C from 25-100 h: (a)(ΔW) vs	
	time and $(b)(\Delta W)^2$ vs time.	95
Figure 6.2:	Plots showing corrosion behavior of SASS 904L coated by SM2,	
	during isothermal exposure at 500-650 °C from 25-100 h: (a)(ΔW) vs	
	time and $(b)(\Delta W)^2$ vs time.	95
Figure 6.3:	Phase analysis of the SM1 coated samples, isothermally exposed at	
	500-650 °C for 25-100 h.	96
Figure 6.4:	Phase analysis of the SM2 coated samples, isothermally exposed at	
	500-650 °C for 25-100 h.	97

Figure 6.5: Morphology and analysis of surface of the samples isothermally exposed at 500 °C: (a,b,c,d) coated with SM1 and (e,f,g,h) coated	
with SM2.	101
Figure 6.6: Morphology and analysis of surface of the samples isothermally	
exposed at 550 °C: (a,b,c,d) coated with SM1 and (e,f,g,h) coated	
with SM2.	102
Figure 6.7: Morphology and analysis of surface of the samples isothermally	
exposed at 600 °C: (a,b,c,d) coated with SM1 and (e,f,g,h) coated	
with SM2.	103
Figure 6.8: Morphology and analysis of surface of the samples isothermally	
exposed at 650 °C: (a,b,c,d) coated with SM1 and (e,f,g,h) coated	
with SM2.	104
Figure 6.9: Cross sections of the SM1 coated sample isothermally exposed at 650	
°C for 25 h, showing EDS peaks of different elements and mapping of	
O, Fe, Cr and Ni.	105
Figure 6.10: Cross sections of the SM2 coated sample isothermally exposed at 650	
°C for 25 h, showing EDS peaks of different elements and mapping of	
O, Fe, Cr and Ni.	106
Figure 6.11: Cross sections of the SM1 coated sample isothermally exposed at 650	
°C for 100 h, showing EDS peaks of different elements and mapping	
of O, Fe, Cr and Ni.	107
Figure 6.12: Cross sections of the SM2 coated sample isothermally exposed at 650	
°C for 100 h, showing EDS peaks of different elements and mapping	
of O, Fe, Cr and Ni.	108
Figure 6.13: EPMA of cross section of the SM2 coated sample isothermally	
exposed at 650 °C for 100 h.	108
Figure 7.1: Bar representation of the weight gain/area (ΔW) from exposure under	
cyclic and isothermal condition from 500-650 °C for 25, 50, 75 and	
100 h.	117

_____ ix]_____

- Figure 7.2: Bar data representation of the weight gain/area (ΔW) for the corroded samples exposed cyclically and isothermally under SM1 salt coating at 500 to 650 °C, at 25, 50, 75 and 100 h.
 Figure 7.3: Bar data representation of the weight gain/area (ΔW) for the corroded
- samples exposed cyclically and isothermally under SM2 salt coating at 500 to 650 °C, at 25, 50, 75 and 100 h. 119