LIST OF TABLES

Table 1.1: Chemical compositions of super austenitic stainless steels.	4
Table 1.2: Applications of super austenitic stainless steels.	4
Table 1.3: Tensile properties of 904L SASS at elevated temperature.	6
Table 2.1: Chemical composition of the super austenitic stainless steel 904L	
in wt%.	25
Table 2.2: Composition of the salt mixtures.	28
Table 3.1: Parabolic rate constant of the SASS 904L, oxidized at 500-650 °C,	
up to 100 h.	35
Table 3.2: Oxide phases formed on the SASS 904L, from exposure at 500-	
650°C for 100 h in air.	36
Table 3.3: Standard Gibbs free energy of formation of different oxides.	46
Table 4.1: The phases formed from oxidation at different temperatures during	
different exposures detected by XRD and Raman spectra.	50
Table 5.1: Parabolic rate constants for the samples hot corroded with SM1 and	
SM2 salt mixtures from 500-650 °C, up to 100 h.	68
Table 5.2: Various phases and compounds formed from hot corrosion of 904L	
steel, by SM1 and SM2 salt mixtures, exposed from 500 to 650 $^\circ$ C,	
up to 100 h.	71
Table 5.3: Possible oxidation/corrosion reactions and their products formed	
from hot corrosion of the 904L steel, by SM1 and SM2, from 500 $^{\circ}$ C	
to 650 °C.	72
Table 5.4: Melting temperatures of different salts and eutectic temperatures of	
different salt mixtures.	83
Table 5.5: Depth of attack on the samples, coated with salt mixtures SM1 and	
SM2, exposed at 650 °C, up to 100 h.	83
Table 5.6: Calculated values of Gibbs free energy (kJ/mole) for the different	
phases resulting from corrosion by SM1 and SM2, from 100 h of	
exposure at 500-650 °C.	90

{ xi }

Table 6.1: Weight gain per unit area (ΔW) and kinetic rate values of	
isothermally exposed samples at 500-650 °C, from 25-100 h under	
SM1 and SM2 salt coated environment.	96
Table 6.2: Phases formed after isothermal exposure of the SASS 904L at 500-	
650 °C from 25-100 h, in SM1 and SM2 salt environment.	98
Table 7.1: Comparison of cyclic and isothermal oxidation of important	
structural materials.	114
Table 7.2: Comparison of results obtained from cyclic and isothermal	
exposures.	122